This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076405 #21 Feb 16 2025 08:32:47 %S A076405 1,8,16,27,32,125,81,64,216,343,128,243,1000,1331,625,256,1728,2197, %T A076405 2744,1296,3375,729,512,4913,5832,2401,6859,8000,9261,10648,1024, %U A076405 12167,13824,3125,17576,2187,21952,24389,27000,29791,10000,2048,35937,39304 %N A076405 Next perfect power having the same least root of n-th perfect power, A001597. %C A076405 A025478(a(n)) = A025478(n); A001597(a(n)) = A025478(n)*A001597(n). %H A076405 Reinhard Zumkeller, <a href="/A076405/b076405.txt">Table of n, a(n) for n = 1..10000</a> %H A076405 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PerfectPower.html">Perfect Powers</a>. %e A076405 . n | A001597(n) | A025478(n)^A025479(n) | a(n) %e A076405 . -----+------------+-----------------------+--------------------------- %e A076405 . 13 | 100 | 10^2 | 1000 = 10^3 = A001597(41) %e A076405 . 14 | 121 | 11^2 | 1331 = 11^3 = A001597(47) %e A076405 . 15 | 125 | 5^3 | 625 = 5^4 = A001597(34) %e A076405 . 16 | 128 | 2^7 | 256 = 2^8 = A001597(23) %e A076405 . 17 | 144 | 12^2 | 1728 = 12^3 = A001597(54). %t A076405 ppQ[n_] := GCD @@ Last /@ FactorInteger@# > 1; f[n_] := Block[{fi = Transpose@ FactorInteger@ n}, fi2 = fi[[2]]; Times @@ (fi[[1]]^(fi[[2]] (1 + 1/GCD @@ fi[[2]])))]; lst = Join[{1}, Select[ Range@ 1848, ppQ@# &]]; f /@ lst (* _Robert G. Wilson v_, Aug 03 2008 *) %o A076405 (Haskell) %o A076405 a076405 n = a076405_list !! (n-1) %o A076405 a076405_list = 1 : f (tail $ zip a001597_list a025478_list) where %o A076405 f ((p, r) : us) = g us where %o A076405 g ((q, r') : vs) = if r' == r then q : f us else g vs %o A076405 -- _Reinhard Zumkeller_, Mar 11 2014 %o A076405 (Python) %o A076405 from math import gcd %o A076405 from sympy import mobius, integer_nthroot, factorint %o A076405 def A076405(n): %o A076405 if n == 1: return 1 %o A076405 def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) %o A076405 kmin, kmax = 1,2 %o A076405 while f(kmax) >= kmax: %o A076405 kmax <<= 1 %o A076405 while True: %o A076405 kmid = kmax+kmin>>1 %o A076405 if f(kmid) < kmid: %o A076405 kmax = kmid %o A076405 else: %o A076405 kmin = kmid %o A076405 if kmax-kmin <= 1: %o A076405 break %o A076405 return kmax*integer_nthroot(kmax, gcd(*factorint(kmax).values()))[0] # _Chai Wah Wu_, Aug 13 2024 %Y A076405 Cf. A052410. %K A076405 nonn %O A076405 1,2 %A A076405 _Reinhard Zumkeller_, Oct 09 2002 %E A076405 More terms from _Robert G. Wilson v_, Aug 03 2008