This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076409 #45 Mar 24 2021 23:02:52 %S A076409 1,1,5,7,22,39,68,76,92,203,186,333,410,430,423,689,767,915,1072,994, %T A076409 1314,1343,1577,1958,2328,2525,2369,2675,2943,3164,3683,3930,4658, %U A076409 4587,5513,5134,6123,6520,6012,7439,7518,8145,7831,9264,9653,8955,10761,11596 %N A076409 Sum of the quadratic residues of prime(n). %C A076409 Row sums of A063987. - _R. J. Mathar_, Jan 08 2015 %C A076409 prime(n) divides a(n) for n > 2. This is implied by a variant of Wolstenholme's theorem (see Hardy & Wright reference). - _Isaac Saffold_, Jun 21 2018 %D A076409 G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 4th ed., Oxford Univ. Press, 1960, p. 88-90. %D A076409 Kenneth A. Ribet, Modular forms and Diophantine questions, Challenges for the 21st century (Singapore 2000), 162-182; World Sci. Publishing, River Edge NJ 2001; Math. Rev. 2002i:11030. %H A076409 Zak Seidov, <a href="/A076409/b076409.txt">Table of n, a(n) for n = 1..1000</a> %H A076409 Christian Aebi and Grant Cairns, <a href="https://arxiv.org/abs/1512.00896">Sums of Quadratic residues and nonresidues</a>, arXiv preprint arXiv:1512.00896 [math.NT] (2015). %F A076409 If prime(n) = 4k+1 then a(n) = k*(4k+1). %F A076409 For n>2 if prime(n) = 4k+3 then a(n) = (k - b)*(4k+3) where b = (h(-p) - 1) / 2; h(-p) = A002143. For instance. If n=5, p=11, k=2, b=(1-1)/2=0 and a(5) = 2*11 = 22. If n=20, p=71, k=17, b=(7-1)/2=3 and a(20) = 14*71 = 994. - _Andrés Ventas_, Mar 01 2021 %e A076409 If n = 3, then p = 5 and a(3) = 1 + 4 = 5. If n = 4, then p = 7 and a(4) = 1 + 4 + 2 = 7. If n = 5, then p = 11 and a(5) = 1 + 4 + 9 + 5 + 3 = 22. - _Michael Somos_, Jul 01 2018 %p A076409 A076409 := proc(n) %p A076409 local a,p,i ; %p A076409 p := ithprime(n) ; %p A076409 a := 0 ; %p A076409 for i from 1 to p-1 do %p A076409 if numtheory[legendre](i,p) = 1 then %p A076409 a := a+i ; %p A076409 end if; %p A076409 end do; %p A076409 a ; %p A076409 end proc: # _R. J. Mathar_, Feb 26 2011 %t A076409 Join[{1,1}, Table[ Apply[ Plus, Flatten[ Position[ Table[ JacobiSymbol[i, Prime[n]], {i, 1, Prime[n] - 1}], 1]]], {n, 3, 48}]] %t A076409 Join[{1}, Table[p=Prime[n]; If[Mod[p,4]==1, p(p-1)/4, Sum[PowerMod[k,2, p],{k,p/2}]], {n,2,1000}]] (* _Zak Seidov_, Nov 02 2011 *) %t A076409 a[ n_] := If[ n < 3, Boole[n > 0], With[{p = Prime[n]}, Sum[ Mod[k^2, p], {k, (p - 1)/2}]]]; (* _Michael Somos_, Jul 01 2018 *) %o A076409 (PARI) a(n,p=prime(n))=if(p<5,return(1)); if(k%4==1, return(p\4*p)); sum(k=1,p-1,k^2%p) \\ _Charles R Greathouse IV_, Feb 21 2017 %Y A076409 Cf. A076410. %Y A076409 Sums of residues, nonresidues, and their differences, for p == 1 mod 4, p == 3 mod 4, and all p: A171555; A282035, A282036, A282037; A076409, A125615, A282038. %K A076409 nonn,easy %O A076409 1,3 %A A076409 _R. K. Guy_, Oct 08 2002 %E A076409 Edited and extended by _Robert G. Wilson v_, Oct 09 2002