A076428 Numbers k such that the sum of digits of k in superfactorial base divides k.
1, 2, 4, 6, 8, 10, 12, 14, 15, 20, 24, 28, 30, 36, 40, 42, 48, 50, 56, 60, 63, 70, 72, 80, 84, 90, 96, 100, 108, 110, 120, 121, 132, 144, 150, 153, 156, 168, 180, 192, 200, 204, 216, 220, 228, 231, 240, 250, 252, 264, 276, 288, 290, 291, 295, 300, 304, 305, 312, 315
Offset: 1
Examples
28 written in superfactorial base is 220, the sum of digits is thus 4 and 4 divides 28, so 28 is included in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A076428 := proc(n) local i,j,m,t,t1; t := NULL; for j from 1 to n do m := j; i := 2; t1 := 0; while m>0 do t1 := t1 + (m mod i!); m := floor(m/i!); i := i+1; od; if j mod t1 = 0 then t := t,j fi; od; t; end;
-
Mathematica
max = 4; bases = Range[max, 1, -1]!; nmax = Times @@ bases - 1; sumdig[n_] := Plus @@ IntegerDigits[n, MixedRadix[bases]]; Select[Range[nmax], Divisible[#, sumdig[#]] &] (* Amiram Eldar, Sep 07 2020 *)
Extensions
Definition corrected by Rémy Sigrist, Mar 20 2018
Comments