This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076432 #22 Sep 10 2024 00:24:06 %S A076432 36,144,2209,6436369,312079766881,328081510656,11305787558464, %T A076432 62854912315881,79723540870416,4550858480922601,11435943732416784, %U A076432 3109406220195722500,6258210474706101136,7596357574791306304,21016258678615763761,32645304184825666489 %N A076432 Perfect powers for which the three closest perfect powers are smaller. %e A076432 The three closest perfect powers to 36 are 32 (difference = 4), 27 (difference = 9) and 25 (difference = 11). The fourth closest is 49 (difference = 13). 32, 27 and 25 are smaller than 36, so 36 is in the sequence. %o A076432 (Python) %o A076432 from itertools import count, islice %o A076432 from sympy import mobius, integer_nthroot %o A076432 def A076432_gen(): # generator of terms %o A076432 def f(x): return int(x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) %o A076432 def bisection(f,kmin=0,kmax=1): %o A076432 while f(kmax) > kmax: kmax <<= 1 %o A076432 while kmax-kmin > 1: %o A076432 kmid = kmax+kmin>>1 %o A076432 if f(kmid) <= kmid: %o A076432 kmax = kmid %o A076432 else: %o A076432 kmin = kmid %o A076432 return kmax %o A076432 a = bisection(f) %o A076432 b = bisection(lambda x:f(x)+1,a,a) %o A076432 c = bisection(lambda x:f(x)+2,b,b) %o A076432 d = bisection(lambda x:f(x)+3,c,c) %o A076432 for i in count(4): %o A076432 e = bisection(lambda x:f(x)+i,d,d) %o A076432 if d-a < e-d: %o A076432 yield d %o A076432 a,b,c,d=b,c,d,e %o A076432 A076432_list = list(islice(A076432_gen(),5)) # _Chai Wah Wu_, Sep 09 2024 %Y A076432 Cf. A001597, A053289, A075772, A076431, A076433. %K A076432 nonn %O A076432 1,1 %A A076432 _Neil Fernandez_, Oct 10 2002 %E A076432 More terms from _Jud McCranie_ and _Robert G. Wilson v_, Oct 11 2002 %E A076432 a(5)-a(10) from _Donovan Johnson_, Sep 03 2008 %E A076432 a(11)-a(16) from _Donovan Johnson_, Aug 01 2013