This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076433 #18 Sep 10 2024 00:24:15 %S A076433 25,121,2187,6431296,6434856,6956883693,27027009001,34359738368, %T A076433 42618264157,312078649600,312079600999,328080365089,11305780833649, %U A076433 11305786504384,19287643015432,62854896459664,79723523012809 %N A076433 Perfect powers for which the two closest perfect powers are greater. %H A076433 Chai Wah Wu, <a href="/A076433/b076433.txt">Table of n, a(n) for n = 1..22</a> %e A076433 The two closest perfect powers to 25 are 27 (difference = 2) and 32 (difference = 7). The third closest is 16 (difference = 9). Both 27 and 32 are greater than 25, so 25 is in the list. %o A076433 (Python) %o A076433 from itertools import count, islice %o A076433 from sympy import mobius, integer_nthroot %o A076433 def A076433_gen(): # generator of terms %o A076433 def f(x): return int(x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) %o A076433 def bisection(f,kmin=0,kmax=1): %o A076433 while f(kmax) > kmax: kmax <<= 1 %o A076433 while kmax-kmin > 1: %o A076433 kmid = kmax+kmin>>1 %o A076433 if f(kmid) <= kmid: %o A076433 kmax = kmid %o A076433 else: %o A076433 kmin = kmid %o A076433 return kmax %o A076433 a = bisection(f) %o A076433 b = bisection(lambda x:f(x)+1,a,a) %o A076433 c = bisection(lambda x:f(x)+2,b,b) %o A076433 for i in count(3): %o A076433 d = bisection(lambda x:f(x)+i,c,c) %o A076433 if b-a > d-b: %o A076433 yield b %o A076433 a,b,c=b,c,d %o A076433 A076433_list = list(islice(A076433_gen(),5)) # _Chai Wah Wu_, Sep 09 2024 %Y A076433 Cf. A001597, A053289, A075772, A076431, A076432. %K A076433 nonn %O A076433 1,1 %A A076433 _Neil Fernandez_, Oct 10 2002 %E A076433 More terms from _Jud McCranie_ and _Robert G. Wilson v_, Oct 11 2002 %E A076433 a(6)-a(17) from _Donovan Johnson_, Sep 03 2008