This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076446 #23 Feb 16 2025 08:32:47 %S A076446 3,4,1,7,9,2,5,4,13,15,8,9,19,8,13,4,3,16,25,27,4,16,9,18,13,32,1,35, %T A076446 19,18,31,8,32,9,43,16,12,17,47,49,23,27,1,53,55,16,41,23,36,61,7,4, %U A076446 28,24,65,36,27,4,69,71,27,8,21,17,3,72,77,47,32,81,47,36,36,49,87,8 %N A076446 Differences of consecutive powerful numbers (definition 1). %C A076446 The term 1 appears infinitely often. Erdős conjectured that two consecutive 1's do not occur. (see Guy). %D A076446 R. K. Guy, Unsolved Problems in Number Theory, B16 %H A076446 Reinhard Zumkeller, <a href="/A076446/b076446.txt">Table of n, a(n) for n = 1..10000</a> %H A076446 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PowerfulNumber.html">Powerful numbers</a> %F A076446 a(n) = A001694(n+1) - A001694(n). %e A076446 The first two powerful numbers are 1 and 4, their difference is 3, so a(1)=3. %t A076446 Differences[Join[{1},Select[Range[2000],Min[FactorInteger[#][[All, 2]]]>1&]]] (* _Harvey P. Dale_, Aug 27 2017 *) %o A076446 (Haskell) %o A076446 a076446 n = a076446_list !! (n-1) %o A076446 a076446_list = zipWith (-) (tail a001694_list) a001694_list %o A076446 -- _Reinhard Zumkeller_, Nov 30 2012 %o A076446 (Python) %o A076446 from math import isqrt %o A076446 from sympy import mobius, integer_nthroot %o A076446 def A076446(n): %o A076446 def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) %o A076446 def bisection(f,kmin=0,kmax=1): %o A076446 while f(kmax) > kmax: kmax <<= 1 %o A076446 while kmax-kmin > 1: %o A076446 kmid = kmax+kmin>>1 %o A076446 if f(kmid) <= kmid: %o A076446 kmax = kmid %o A076446 else: %o A076446 kmin = kmid %o A076446 return kmax %o A076446 def f(x): %o A076446 c, l = n+x, 0 %o A076446 j = isqrt(x) %o A076446 while j>1: %o A076446 k2 = integer_nthroot(x//j**2,3)[0]+1 %o A076446 w = squarefreepi(k2-1) %o A076446 c -= j*(w-l) %o A076446 l, j = w, isqrt(x//k2**3) %o A076446 c -= squarefreepi(integer_nthroot(x,3)[0])-l %o A076446 return c %o A076446 return -(a:=bisection(f,n,n))+bisection(lambda x:f(x)+1,a,a) # _Chai Wah Wu_, Sep 10 2024 %Y A076446 Cf. A001694, A076444. %K A076446 nonn %O A076446 1,1 %A A076446 _Jud McCranie_, Oct 15 2002