This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076469 #15 Aug 14 2024 13:11:48 %S A076469 1,32,64,128,243,256,512,729,1024,2048,2187,3125,4096,6561,7776,8192, %T A076469 15625,16384,16807,19683,32768,46656,59049,65536,78125,100000,117649, %U A076469 131072,161051,177147,248832,262144,279936,371293,390625,524288,531441 %N A076469 Perfect powers m^k where k >= 5. %C A076469 If p|n when at least p^5|n. %H A076469 Amiram Eldar, <a href="/A076469/b076469.txt">Table of n, a(n) for n = 1..10000</a> %F A076469 Sum_{n>=1} 1/a(n) = 4 - zeta(2) - zeta(3) - zeta(4) + Sum_{k>=2} mu(k)*(4 - zeta(k) - zeta(2*k) - zeta(3*k) - zeta(4*k)) = 1.06932853458... . - _Amiram Eldar_, Dec 03 2022 %t A076469 a = {1}; Do[ If[ Apply[ GCD, Last[ Transpose[ FactorInteger[n]]]] > 4, a = Append[a, n]; Print[n]], {n, 2, 537823}]; a %o A076469 (Python) %o A076469 from sympy import mobius, integer_nthroot %o A076469 def A076469(n): %o A076469 def f(x): return int(n+3+x-(integer_nthroot(x,6)[0]<<1)-integer_nthroot(x,8)[0]-integer_nthroot(x,9)[0]-integer_nthroot(x,12)[0]+sum(mobius(k)*(integer_nthroot(x,k)[0]+integer_nthroot(x,k<<1)[0]+integer_nthroot(x,3*k)[0]+integer_nthroot(x,k<<2)[0]-4) for k in range(5,x.bit_length()))) %o A076469 kmin, kmax = 1,2 %o A076469 while f(kmax) >= kmax: %o A076469 kmax <<= 1 %o A076469 while True: %o A076469 kmid = kmax+kmin>>1 %o A076469 if f(kmid) < kmid: %o A076469 kmax = kmid %o A076469 else: %o A076469 kmin = kmid %o A076469 if kmax-kmin <= 1: %o A076469 break %o A076469 return kmax # _Chai Wah Wu_, Aug 14 2024 %Y A076469 Cf. A001597, A076467, A076468, A076470. %Y A076469 Cf. A002117, A013661, A013662. %K A076469 nonn %O A076469 1,2 %A A076469 _Robert G. Wilson v_, Oct 14 2002