This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076470 #17 Aug 14 2024 13:11:58 %S A076470 1,64,128,256,512,729,1024,2048,2187,4096,6561,8192,15625,16384,19683, %T A076470 32768,46656,59049,65536,78125,117649,131072,177147,262144,279936, %U A076470 390625,524288,531441,823543,1000000,1048576,1594323,1679616,1771561 %N A076470 Perfect powers m^k where k >= 6. %C A076470 A necessary but not sufficient condition is that if p|n when at least p^6|n. %H A076470 Amiram Eldar, <a href="/A076470/b076470.txt">Table of n, a(n) for n = 1..10000</a> %F A076470 Sum_{n>=1} 1/a(n) = 5 - zeta(2) - zeta(3) - zeta(4) - zeta(5) + Sum_{k>=2} mu(k)*(5 - zeta(k) - zeta(2*k) - zeta(3*k) - zeta(4*k) - zeta(5*k)) = 1.03342597171... . - _Amiram Eldar_, Dec 03 2022 %t A076470 a = {1}; Do[ If[ Apply[ GCD, Last[ Transpose[ FactorInteger[n]]]] > 4, a = Append[a, n]; Print[n]], {n, 2, 1953124}]; a %o A076470 (Python) %o A076470 from sympy import mobius, integer_nthroot %o A076470 def A076470(n): %o A076470 def f(x): return int(n+9+x-(sum(integer_nthroot(x,d)[0] for d in (6,10,15))<<1)-sum(integer_nthroot(x,d)[0] for d in (8,9,12,20,25))+sum(mobius(k)*(sum(integer_nthroot(x,k*i)[0] for i in range(1,6))-5) for k in range(6,x.bit_length()))) %o A076470 kmin, kmax = 1,2 %o A076470 while f(kmax) >= kmax: %o A076470 kmax <<= 1 %o A076470 while True: %o A076470 kmid = kmax+kmin>>1 %o A076470 if f(kmid) < kmid: %o A076470 kmax = kmid %o A076470 else: %o A076470 kmin = kmid %o A076470 if kmax-kmin <= 1: %o A076470 break %o A076470 return kmax # _Chai Wah Wu_, Aug 14 2024 %Y A076470 Cf. A001597, A076467, A076468, A076469. %Y A076470 Different from A069493. %Y A076470 Cf. A002117, A013661, A013662, A013663. %K A076470 nonn %O A076470 1,2 %A A076470 _Robert G. Wilson v_, Oct 14 2002