This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076485 #17 Aug 18 2019 04:34:16 %S A076485 12,18,24,44,48,49,54,56,72,88,92,96,99,108,112,116,125,132,135,140, %T A076485 147,152,162,168,169,172,176,184,188,192,196,198,200,207,216,224,236, %U A076485 248,250,264,270,276,280,284,288,297,308,328,332,336,344,348,352,361 %N A076485 Solutions to gcd(sigma(x), phi(x)) > gcd(sigma(core(x)), phi(core(x))), i.e., when A009223(x) > A066086(x) or if A066087(x) > 0. %H A076485 Amiram Eldar, <a href="/A076485/b076485.txt">Table of n, a(n) for n = 1..10000</a> %e A076485 For n=12: sigma(12)=28, phi(12)=4, gcd(28,4)=4 core(12)=6, sigma(6)=12, phi(6)=2, gcd(12,2)=2. %t A076485 ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] g1[x_] := GCD[DivisorSigma[1, x], EulerPhi[x]] g2[x_] := GCD[DivisorSigma[1, cor[x]], EulerPhi[cor[x]]] Do[s1=g1[n]; s2=g2[n]; If[Greater[s1, s2], Print[n]], {n, 1, 256}] %Y A076485 Cf. A000010, A000203, A007947, A009223, A023900, A048250, A066086, A066087. %K A076485 nonn %O A076485 1,1 %A A076485 _Labos Elemer_, Oct 17 2002