This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076632 #21 May 08 2019 07:11:00 %S A076632 1,1,1,2,1,3,4,2,9,6,12,23,1,46,45,47,136,43,229,314,144,771,484,1058, %T A076632 2025,91,4140,3959,4321,12238,3597,20879,28072,13686,69829,42458, %U A076632 97200,182115,12285,376514,351945,401083,1104972,302807 %N A076632 Solve 2^n - 2 = 7(x^2 - x) + (y^2 - y) for (x,y) with x>0, y>0; sequence gives value of x. %C A076632 Euler (unpublished) showed there is a unique positive solution (x,y) for every positive n. %D A076632 Engel, Problem-Solving Strategies. %F A076632 Note that the equation is equivalent to 2^(n+2) = (2y-1)^2 + 7 (2x-1)^2, so it is related to norms of elements of the ring of integers in the quadratic field Q(sqrt(-7)) and Euler's claim presumably follows from unique factorization in that field. From this we can get a formula for the x's and y's: Let a(n) and b(n) be the unique rational numbers such that a(n) + b(n) sqrt(-7) = ((1 + sqrt(-7))/2)^n. I.e., a(n) = (((1 + sqrt(-7))/2)^n + ((1 - sqrt(-7))/2)^n)/2. - _Dean Hickerson_, Oct 19 2002 %F A076632 a(n) = (1/sqrt(7))*2^(n/2)*abs(sin(n*t))+1/2, where t=arctan(sqrt(7)). - _Paul Boddington_, Jan 23 2004 %F A076632 a(n) = (1+2*A077020(n+2))/2. - _R. J. Mathar_, May 08 2019 %o A076632 (PARI) p(n,x,y)=2^n-2-7*(x^2-x)-(y^2-y) a(n)=if(n<0,0,x=1; while(frac(real(component(polroots(p(n,x,y)),2)))>0,x++); x) %Y A076632 Cf. A076631 (values of y). %K A076632 nonn,easy %O A076632 1,4 %A A076632 _Ed Pegg Jr_, Oct 17 2002 %E A076632 More terms from _Benoit Cloitre_, Oct 24 2002 %E A076632 Definition corrected by _Harvey P. Dale_, Dec 15 2018