A076637 Numerators of harmonic numbers when these numerators are divisible by squares of primes >= 5 in the case of Wolstenholme's Theorem.
25, 49, 7381, 86021, 2436559, 14274301, 19093197, 315404588903, 9304682830147, 54801925434709, 2078178381193813, 12309312989335019, 5943339269060627227, 14063600165435720745359, 254381445831833111660789, 15117092380124150817026911
Offset: 1
Examples
25 is a term because the numerator of the harmonic number H_4 = 1 + 1/2+ 1/3 + 1/4 = 25/12 is divisible by the square of 5; 49 is a term because the numerator of the harmonic number H_6 = 1 + 1/2+ 1/3 + 1/4 + 1/5 + 1/6 = 49/20 is divisible by the square of 7.
Links
- Eric Weisstein's World of Mathematics, Wolstenholme's Theorem
Programs
-
Mathematica
a[p_] := Numerator[HarmonicNumber[p - 1]]; a /@ Prime@Range[3, 20] (* Amiram Eldar, Dec 08 2018 *)
Extensions
More terms from Amiram Eldar, Dec 04 2018
Comments