This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076716 #34 Feb 01 2020 22:40:38 %S A076716 1,1,2,7,21,98,392,2116,11830,70520,425240,2787810,19530213,144890639, %T A076716 1149978830,8558078111,76417516719,618437486332,6087770992601, %U A076716 54574732902278,525656554130914,5290117056157616,61626071051832409,555057889968635744,5809502058957961682 %N A076716 Number of distinct factorizations of n! with all factors > 1. %F A076716 a(n) = A001055(n!). %e A076716 a(3) = 2 because 3! = 6 = 2*3 has just 2 factorizations. %e A076716 a(4) = 7 because 4! = 24 = 2*12 = 2*2*6 = 2*2*2*3 = 2*3*4 = 3*8 = 4*6 has 7 factorizations. %p A076716 with(numtheory): %p A076716 b:= proc(n, k) option remember; %p A076716 `if`(n>k, 0, 1) +`if`(isprime(n), 0, %p A076716 add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n})) %p A076716 end: %p A076716 a:= n-> b(n!$2): %p A076716 seq(a(n), n=1..12); # _Alois P. Heinz_, May 25 2013 %t A076716 c[1, r_] := c[1, r]=1; c[n_, r_] := c[n, r]=Module[{ds, i}, ds=Select[Divisors[n], 1<#<=r&]; Sum[c[n/ds[[i]], ds[[i]]], {i, 1, Length[ds]}]]; a[n_] := c[n!, n! ]; a/@Range[16] (* c[n, r] is the number of factorizations of n with factors <= r. - _Dean Hickerson_, Oct 29 2002 *) %o A076716 (PARI) \\ See A318284 for count. %o A076716 a(n)={if(n<=1, 1, count(factor(n!)[,2]))} \\ _Andrew Howroyd_, Feb 01 2020 %Y A076716 Cf. A001055, A157612, A162247, A318284. %K A076716 nonn %O A076716 1,3 %A A076716 _Donald S. McDonald_, Oct 27 2002 %E A076716 Edited by _Robert G. Wilson v_, Oct 29 2002 %E A076716 4 more terms from _Ryan Propper_, May 20 2007 %E A076716 a(20)-a(25) from _Andrew Howroyd_, Feb 01 2020