cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076732 Table T(n,k) giving number of ways of obtaining exactly one correct answer on an (n,k)-matching problem (1 <= k <= n).

This page as a plain text file.
%I A076732 #20 Nov 14 2023 07:05:24
%S A076732 1,1,0,1,2,3,1,4,9,8,1,6,21,44,45,1,8,39,128,265,264,1,10,63,284,905,
%T A076732 1854,1855,1,12,93,536,2325,7284,14833,14832,1,14,129,908,5005,21234,
%U A076732 65821,133496,133497,1,16,171,1424,9545,51264,214459,660064,1334961,1334960
%N A076732 Table T(n,k) giving number of ways of obtaining exactly one correct answer on an (n,k)-matching problem (1 <= k <= n).
%C A076732 Hanson et al. define the (n,k)-matching problem in the following realistic way. A matching question on an exam has k questions with n possible answers to choose from, each question having a unique answer. If a student guesses the answers at random, using each answer at most once, what is the probability of obtaining r of the k correct answers?
%C A076732 The T(n,k) represent the number of ways of obtaining exactly one correct answer, i.e., r=1, given k questions and n possible answers, 1 <= k <= n.
%H A076732 D. Hanson, K. Seyffarth and J. H. Weston, <a href="http://www.jstor.org/stable/2689812">Matchings, Derangements, Rencontres</a>, Mathematics Magazine, Vol. 56, No. 4, September 1983.
%F A076732 T(n,k) = F(n,k)*Sum{((-1)^j)*C(k-1, j)*(n-1-j)! (j=0 to k-1)}, where F(n,k) = k/(n-k)!, for 1 <= k <= n.
%F A076732 From _Johannes W. Meijer_, Jul 27 2011: (Start)
%F A076732 T(n,k) = k*T(n-1,k-1) + T(n-1,k) with T(n,1) = 1 and T(n,n) = A000240(n). [Hanson et al.]
%F A076732 T(n,k) = (n-1)*T(n-1,k-1) + (k-1)*T(n-2,k-2) + (1-k)*A076731(n-2,k-2) + A076731(n-1,k-1) with T(0,0) = T(n,0) = 0 and T(n,1) = 1. [Hanson et al.]
%F A076732 T(n,k) = k*A060475(n-1,k-1).
%F A076732 T(n,k) = (k/(n-k)!)*A047920(n-1,k-1).
%F A076732 Sum_{k=1..n} T(n,k) = A193463(n); row sums.
%F A076732 Sum_{k=1..n} T(n,k)/k = A003470(n-1). (End)
%e A076732 Triangle begins
%e A076732   1;
%e A076732   1,0;
%e A076732   1,2,3;
%e A076732   1,4,9,8;
%e A076732   ...
%p A076732 A076732:=proc(n,k): (k/(n-k)!)*A047920(n,k) end: A047920:=proc(n,k): add(((-1)^j)*binomial(k-1,j)*(n-1-j)!, j=0..k-1) end: seq(seq(A076732(n,k), k=1..n), n=1..10); # _Johannes W. Meijer_, Jul 27 2011
%t A076732 A000240[n_] := Subfactorial[n] - (-1)^n;
%t A076732 T[n_, k_] := T[n, k] = Switch[k, 1, 1, n, A000240[n], _, k*T[n-1, k-1] + T[n-1, k]];
%t A076732 Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Nov 14 2023 *)
%Y A076732 Columns: A000012(n), 2*A001477(n-2), 3*A002061(n-2), 4*A094792(n-4), 5*A094793(n-5), 6*A094794(n-6), 7*A094795(n-7); A000240(n), A000166(n). - _Johannes W. Meijer_, Jul 27 2011
%K A076732 nonn,tabl
%O A076732 1,5
%A A076732 _Mohammad K. Azarian_, Oct 28 2002
%E A076732 Edited and information added by _Johannes W. Meijer_, Jul 27 2011