This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076757 #22 Sep 08 2022 08:45:07 %S A076757 3,5,11,13,17,19,29,37,43,47,59,67,71,73,79,83,89,97,101,103,107,109, %T A076757 113,127,131,139,149,151,163,167,173,179,181,191,197,199,211,223,227, %U A076757 229,239,251,263,269,271,277,281,307,313,317,331,337,347 %N A076757 Primes of the form n + pi(n), that is, generated in A077510. %H A076757 Indranil Ghosh, <a href="/A076757/b076757.txt">Table of n, a(n) for n = 1..6414</a> %F A076757 a(n) = k+A000720(k) where k=A077510(n). - _R. J. Mathar_, Nov 19 2011 %p A076757 isA077510 := proc(n) %p A076757 isprime(n+numtheory[pi](n)) ; %p A076757 end proc: %p A076757 A077510 := proc(n) %p A076757 local a; %p A076757 if n = 1 then %p A076757 return 2; %p A076757 else %p A076757 for a from procname(n-1)+1 do %p A076757 if isA077510(a) then %p A076757 return a; %p A076757 end if; %p A076757 end do: %p A076757 end if: %p A076757 end proc: %p A076757 A076757 := proc(n) %p A076757 local a10 ; %p A076757 a10 := A077510(n) ; %p A076757 a10+numtheory[pi](a10) ; %p A076757 end proc: %p A076757 seq(A076757(n),n=1..40) ; # _R. J. Mathar_, Nov 19 2011 %t A076757 Select[Table[n + PrimePi[n], {n, 500}], PrimeQ] (* _T. D. Noe_, Nov 19 2011 *) %o A076757 (Magma) [a: n in [1..400] | IsPrime(a) where a is (n + #PrimesUpTo(n))]; // _Vincenzo Librandi_, Jan 29 2017 %Y A076757 Cf. A000720, A077510. %K A076757 nonn %O A076757 1,1 %A A076757 _David Garber_, Nov 13 2002 %E A076757 Name edited by _Michel Marcus_, Dec 30 2013