This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076766 #37 Nov 14 2023 09:22:14 %S A076766 1,2,4,8,16,32,68,148,342,848,2297,6928,24034,98854,503137,3318732, %T A076766 29708814,374039266,6739630253,173801649708,6356255181216, %U A076766 326203517516704,23294352980140884,2301176047764925736,313285408199180770635,58638266023262502962716 %N A076766 Number of inequivalent binary linear codes of length n. Also the number of nonisomorphic binary matroids on an n-set. %D A076766 M. Wild, Enumeration of binary and ternary matroids and other applications of the Brylawski-Lucas Theorem, Preprint Nr. 1693, Tech. Hochschule Darmstadt, 1994. %H A076766 Jayant Apte and J. M. Walsh, <a href="http://arxiv.org/abs/1605.04598">Constrained Linear Representability of Polymatroids and Algorithms for Computing Achievability Proofs in Network Coding</a>, arXiv preprint arXiv:1605.04598 [cs.IT], 2016-2017. %H A076766 Suyoung Choi and Hanchul Park, <a href="https://arxiv.org/abs/1711.04537">Multiplication structure of the cohomology ring of real toric spaces</a>, arXiv:1711.04983 [math.AT], 2017. %H A076766 H. Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables.html">Isometry Classes of Codes</a>. %H A076766 Dillon Mayhew and Gordon F. Royle, <a href="https://arxiv.org/abs/math/0702316">Matroids with nine elements</a>, arXiv:math/0702316 [math.CO], 2007. %H A076766 Dillon Mayhew and Gordon F. Royle, <a href="https://doi.org/10.1016/j.jctb.2007.07.005">Matroids with nine elements</a>, J. Combin. Theory Ser. B 98(2) (2008), 415-431. %H A076766 James Oxley, <a href="http://www.math.lsu.edu/~preprint/2002/jgo2002e.pdf">What is a Matroid?</a>. %H A076766 Gordon Royle and Dillon Mayhew, <a href="https://web.archive.org/web/20080828102733/http://people.csse.uwa.edu.au/gordon/matroid-integer-sequences.html">9-element matroids</a>. %H A076766 D. Slepian, <a href="http://dx.doi.org/10.4153/CJM-1953-020-x">On the number of symmetry types of Boolean functions of n variables</a>, Canadian J. Math. 5, (1953), 185-193. %H A076766 D. Slepian, <a href="https://archive.org/details/bstj35-1-203">A class of binary signaling alphabets</a>, Bell System Tech. J. 35 (1956), 203-234. %H A076766 D. Slepian, <a href="https://archive.org/details/bstj39-5-1219">Some further theory of group codes</a>, Bell System Tech. J. 39 1960 1219-1252. (Row sums of Table II.) %H A076766 Marcel Wild, <a href="https://doi.org/10.1006/eujc.1996.0026">Consequences of the Brylawski-Lucas Theorem for binary matroids</a>, European Journal of Combinatorics 17 (1996), 309-316. %H A076766 Marcel Wild, <a href="https://doi.org/10.1006/ffta.1999.0273">The asymptotic number of inequivalent binary codes and nonisomorphic binary matroids</a>, Finite Fields and their Applications 6 (2000), 192-202. %H A076766 Marcel Wild, <a href="https://doi.org/10.1137/S0895480104445538">The asymptotic number of binary codes and binary matroids</a>, SIAM J. Discrete Math. 19 (2005), 691-699. [This paper apparently corrects some errors in previous papers.] %H A076766 <a href="/index/Coa#codes_binary_linear">Index entries for sequences related to binary linear codes</a> %e A076766 a(2)=4 because there are four inequivalent linear binary 2-codes: {(0,0)}, {(0,0),(1,0)}, {(0,0),(1,1)}, {(0,0),(1,0),(0,1),(1,1)}. Observe that the codes {(0,0),(1,0)} and {(0,0),(0,1)} are equivalent because one arises from the other by a permutation of coordinates. %Y A076766 Row sums of triangle A076831. Cf. A034328, A055545. %K A076766 nice,nonn %O A076766 0,2 %A A076766 Marcel Wild (mwild(AT)sun.ac.za), Nov 14 2002 %E A076766 Edited by _N. J. A. Sloane_, Nov 01 2007, at the suggestion of _Gordon Royle_.