cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076766 Number of inequivalent binary linear codes of length n. Also the number of nonisomorphic binary matroids on an n-set.

This page as a plain text file.
%I A076766 #37 Nov 14 2023 09:22:14
%S A076766 1,2,4,8,16,32,68,148,342,848,2297,6928,24034,98854,503137,3318732,
%T A076766 29708814,374039266,6739630253,173801649708,6356255181216,
%U A076766 326203517516704,23294352980140884,2301176047764925736,313285408199180770635,58638266023262502962716
%N A076766 Number of inequivalent binary linear codes of length n. Also the number of nonisomorphic binary matroids on an n-set.
%D A076766 M. Wild, Enumeration of binary and ternary matroids and other applications of the Brylawski-Lucas Theorem, Preprint Nr. 1693, Tech. Hochschule Darmstadt, 1994.
%H A076766 Jayant Apte and J. M. Walsh, <a href="http://arxiv.org/abs/1605.04598">Constrained Linear Representability of Polymatroids and Algorithms for Computing Achievability Proofs in Network Coding</a>, arXiv preprint arXiv:1605.04598 [cs.IT], 2016-2017.
%H A076766 Suyoung Choi and Hanchul Park, <a href="https://arxiv.org/abs/1711.04537">Multiplication structure of the cohomology ring of real toric spaces</a>, arXiv:1711.04983 [math.AT], 2017.
%H A076766 H. Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables.html">Isometry Classes of Codes</a>.
%H A076766 Dillon Mayhew and Gordon F. Royle, <a href="https://arxiv.org/abs/math/0702316">Matroids with nine elements</a>, arXiv:math/0702316 [math.CO], 2007.
%H A076766 Dillon Mayhew and Gordon F. Royle, <a href="https://doi.org/10.1016/j.jctb.2007.07.005">Matroids with nine elements</a>, J. Combin. Theory Ser. B 98(2) (2008), 415-431.
%H A076766 James Oxley, <a href="http://www.math.lsu.edu/~preprint/2002/jgo2002e.pdf">What is a Matroid?</a>.
%H A076766 Gordon Royle and Dillon Mayhew, <a href="https://web.archive.org/web/20080828102733/http://people.csse.uwa.edu.au/gordon/matroid-integer-sequences.html">9-element matroids</a>.
%H A076766 D. Slepian, <a href="http://dx.doi.org/10.4153/CJM-1953-020-x">On the number of symmetry types of Boolean functions of n variables</a>, Canadian J. Math. 5, (1953), 185-193.
%H A076766 D. Slepian, <a href="https://archive.org/details/bstj35-1-203">A class of binary signaling alphabets</a>, Bell System Tech. J. 35 (1956), 203-234.
%H A076766 D. Slepian, <a href="https://archive.org/details/bstj39-5-1219">Some further theory of group codes</a>, Bell System Tech. J. 39 1960 1219-1252. (Row sums of Table II.)
%H A076766 Marcel Wild, <a href="https://doi.org/10.1006/eujc.1996.0026">Consequences of the Brylawski-Lucas Theorem for binary matroids</a>, European Journal of Combinatorics 17 (1996), 309-316.
%H A076766 Marcel Wild, <a href="https://doi.org/10.1006/ffta.1999.0273">The asymptotic number of inequivalent binary codes and nonisomorphic binary matroids</a>, Finite Fields and their Applications 6 (2000), 192-202.
%H A076766 Marcel Wild, <a href="https://doi.org/10.1137/S0895480104445538">The asymptotic number of binary codes and binary matroids</a>, SIAM J. Discrete Math. 19 (2005), 691-699. [This paper apparently corrects some errors in previous papers.]
%H A076766 <a href="/index/Coa#codes_binary_linear">Index entries for sequences related to binary linear codes</a>
%e A076766 a(2)=4 because there are four inequivalent linear binary 2-codes: {(0,0)}, {(0,0),(1,0)}, {(0,0),(1,1)}, {(0,0),(1,0),(0,1),(1,1)}. Observe that the codes {(0,0),(1,0)} and {(0,0),(0,1)} are equivalent because one arises from the other by a permutation of coordinates.
%Y A076766 Row sums of triangle A076831. Cf. A034328, A055545.
%K A076766 nice,nonn
%O A076766 0,2
%A A076766 Marcel Wild (mwild(AT)sun.ac.za), Nov 14 2002
%E A076766 Edited by _N. J. A. Sloane_, Nov 01 2007, at the suggestion of _Gordon Royle_.