This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076796 #9 Apr 16 2025 21:12:42 %S A076796 1,7,15,24,32,39,47,59,79,88,102,111,134,148,158,164,172,190,206,214, %T A076796 220,233,241,251,263,271,283,292,307,314,322,329,337,350,358,364,373, %U A076796 384,399,413,438,446,456,462,475,481,494,502,516,529,536,552,559,567 %N A076796 Greedy powers of Pi/4: Sum_{n>=1} (Pi/4)^a(n) = 1. %C A076796 The n-th greedy power of x, when 0.5 < x < 1, is the smallest integer exponent a(n) that does not cause the power series Sum_{k=1..n} x^a(k) to exceed unity. %F A076796 a(n) = Sum_{k=1..n} floor(g_k) where g_1=1, g_{n+1} = log_x(x^frac(g_n) - x) (n > 0) at x=Pi/4 and frac(y) = y - floor(y). %e A076796 Pi/4 + (Pi/4)^7 + (Pi/4)^15 < 1 and Pi/4 + (Pi/4)^7 + (Pi/4)^14 > 1; since the power 14 makes the sum > 1, 15 is the 3rd greedy power of Pi/4, so a(3)=15. %p A076796 Digits := 400: summe := 0.0: p := evalf(Pi / 4.): pexp := p: a := []: for i from 1 to 800 do: if summe + pexp < 1 then a := [op(a),i]: summe := summe + pexp: fi: pexp := pexp * p: od: a; %Y A076796 Cf. A077468 - A077475. %K A076796 easy,nonn %O A076796 1,2 %A A076796 Ulrich Schimke (ulrschimke(AT)aol.com) %E A076796 Typos in data corrected by _Sean A. Irvine_, Apr 16 2025