cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076808 a(n) = 82n^3 - 1228n^2 + 6130n - 5861.

This page as a plain text file.
%I A076808 #29 Feb 16 2025 08:32:47
%S A076808 -5861,-877,2143,3691,4259,4339,4423,5003,6571,9619,14639,22123,32563,
%T A076808 46451,64279,86539,113723,146323,184831,229739,281539,340723,407783,
%U A076808 483211,567499,661139,764623,878443,1003091,1139059,1286839,1446923,1619803,1805971
%N A076808 a(n) = 82n^3 - 1228n^2 + 6130n - 5861.
%C A076808 A prime-generating cubic polynomial.
%C A076808 For n=0 ... 31, the absolute value of terms in this sequence are primes.  This is not the case for n=32. See A272323 and A272324. - _Robert Price_, Apr 25 2016
%H A076808 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomials</a>
%H A076808 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A076808 G.f.: (13301*x^3-29515*x^2+22567*x-5861)/(x-1)^4. - _Colin Barker_, Nov 10 2012
%F A076808 E.g.f.: (-5861 + 4984*x - 982*x^2 + 82*x^3)*exp(x). - _Ilya Gutkovskiy_, Apr 25 2016
%t A076808 Table[82 n^3 - 1228 n^2 + 6130 n - 5861, {n, 0, 31}] (* or *)
%t A076808 CoefficientList[Series[(13301 x^3 - 29515 x^2 + 22567 x - 5861)/(x - 1)^4, {x, 0, 31}], x] (* _Michael De Vlieger_, Apr 25 2016 *)
%t A076808 LinearRecurrence[{4,-6,4,-1},{-5861,-877,2143,3691},40] (* _Harvey P. Dale_, Jun 18 2018 *)
%o A076808 (Maxima) A076808(n):=82*n^3-1228*n^2+6130*n-5861$
%o A076808 makelist(A076808(n),n,0,30); /* _Martin Ettl_, Nov 08 2012 */
%o A076808 (PARI) a(n)=82*n^3-1228*n^2+6130*n-5861 \\ _Charles R Greathouse IV_, Oct 07 2015
%Y A076808 Cf. A050266, A076809, A272323, A272324.
%K A076808 easy,sign
%O A076808 0,1
%A A076808 Hilko Koning (hilko(AT)hilko.net), Nov 18 2002