cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076831 Triangle T(n,k) read by rows giving number of inequivalent binary linear [n,k] codes (n >= 0, 0 <= k <= n).

This page as a plain text file.
%I A076831 #56 Oct 09 2019 02:52:07
%S A076831 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,1,5,10,10,5,1,1,6,16,22,16,6,1,1,7,23,
%T A076831 43,43,23,7,1,1,8,32,77,106,77,32,8,1,1,9,43,131,240,240,131,43,9,1,1,
%U A076831 10,56,213,516,705,516,213,56,10,1,1,11,71,333,1060,1988,1988
%N A076831 Triangle T(n,k) read by rows giving number of inequivalent binary linear [n,k] codes (n >= 0, 0 <= k <= n).
%C A076831 "The familiar appearance of the first few rows [...] provides a good example of the perils of too hasty extrapolation in mathematics." - Slepian.
%C A076831 The difference between this triangle and the one for which it can be so easily mistaken is A250002. - _Tilman Piesk_, Nov 10 2014.
%D A076831 M. Wild, Enumeration of binary and ternary matroids and other applications of the Brylawski-Lucas Theorem, Preprint No. 1693, Tech. Hochschule Darmstadt, 1994
%H A076831 Harald Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables.html">Isometry Classes of Codes</a>.
%H A076831 Harald Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables_6.html">Wnk2: Number of the isometry classes of all binary (n,k)-codes</a>. [This is a rectangular array whose lower triangle contains T(n,k).]
%H A076831 H. Fripertinger and A. Kerber, <a href="https://doi.org/10.1007/3-540-60114-7_15">Isometry classes of indecomposable linear codes</a>. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [Apparently, the notation for T(n,k) is W_{nk2}; see p. 197.]
%H A076831 Petros Hadjicostas, <a href="/A076831/a076831.txt">Generating function for column k=4</a>.
%H A076831 Petros Hadjicostas, <a href="/A076831/a076831_1.txt">Generating function for column k=5</a>.
%H A076831 Petros Hadjicostas, <a href="/A076831/a076831_2.txt">Generating function for column k=6</a>.
%H A076831 Kent E. Morrison, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
%H A076831 David Slepian, <a href="https://archive.org/details/bstj39-5-1219">Some further theory of group codes</a>, Bell System Tech. J. 39(5) (1960), 1219-1252.
%H A076831 David Slepian, <a href="https://doi.org/10.1002/j.1538-7305.1960.tb03958.x">Some further theory of group codes</a>, Bell System Tech. J. 39(5) (1960), 1219-1252.
%H A076831 Marcel Wild, <a href="http://dx.doi.org/10.1006/eujc.1996.0026">Consequences of the Brylawski-Lucas Theorem for binary matroids</a>, European Journal of Combinatorics 17 (1996), 309-316.
%H A076831 Marcel Wild, <a href="http://dx.doi.org/10.1006/ffta.1999.0273">The asymptotic number of inequivalent binary codes and nonisomorphic binary matroids</a>, Finite Fields and their Applications 6 (2000), 192-202.
%H A076831 Marcel Wild, <a href="https://doi.org/10.1137/S0895480104445538">The asymptotic number of binary codes and binary matroids</a>, SIAM  J. Discrete Math. 19 (2005), 691-699. [This paper apparently corrects some errors in previous papers.]
%H A076831 <a href="/index/Coa#codes_binary_linear">Index entries for sequences related to binary linear codes</a>
%F A076831 From _Petros Hadjicostas_, Sep 30 2019: (Start)
%F A076831 T(n,k) = Sum_{i = k..n} A034253(i,k) for 1 <= k <= n.
%F A076831 G.f. for column k=2: -(x^3 - x - 1)*x^2/((x^2 + x + 1)*(x + 1)*(x - 1)^4).
%F A076831 G.f. for column k=3: -(x^12 - 2*x^11 + x^10 - x^9 - x^6 + x^4 - x - 1)*x^3/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^2 + x + 1)^2*(x^2 + 1)*(x + 1)^2*(x - 1)^8).
%F A076831 G.f. for column k >= 4: modify the Sage program below (cf. function f). It is too complicated to write it here. (See also some of the links above.)
%F A076831 (End)
%e A076831      k    0   1   2   3    4    5    6    7    8   9  10  11        sum
%e A076831    n
%e A076831    0      1                                                           1
%e A076831    1      1   1                                                       2
%e A076831    2      1   2   1                                                   4
%e A076831    3      1   3   3   1                                               8
%e A076831    4      1   4   6   4    1                                         16
%e A076831    5      1   5  10  10    5    1                                    32
%e A076831    6      1   6  16  22   16    6    1                               68
%e A076831    7      1   7  23  43   43   23    7    1                         148
%e A076831    8      1   8  32  77  106   77   32    8    1                    342
%e A076831    9      1   9  43 131  240  240  131   43    9   1                848
%e A076831   10      1  10  56 213  516  705  516  213   56  10   1           2297
%e A076831   11      1  11  71 333 1060 1988 1988 1060  333  71  11   1       6928
%o A076831 (Sage) # Fripertinger's method to find the g.f. of column k >= 2 (for small k):
%o A076831 def A076831col(k, length):
%o A076831     G1 = PSL(k, GF(2))
%o A076831     G2 = PSL(k-1, GF(2))
%o A076831     D1 = G1.cycle_index()
%o A076831     D2 = G2.cycle_index()
%o A076831     f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
%o A076831     f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
%o A076831     f = (f1 - f2)/(1-x)
%o A076831     return f.taylor(x, 0, length).list()
%o A076831 # For instance the Taylor expansion for column k = 4 gives
%o A076831 print(A076831col(4, 30)) # _Petros Hadjicostas_, Sep 30 2019
%Y A076831 Cf. A006116, A022166, A076766 (row sums).
%Y A076831 A034356 gives same table but with the k=0 column omitted.
%Y A076831 Columns include A000012 (k=0), A000027 (k=1), A034198 (k=2), A034357 (k=3), A034358 (k=4), A034359 (k=5), A034360 (k=6), A034361 (k=7), A034362 (k=8).
%K A076831 nonn,tabl,nice
%O A076831 0,5
%A A076831 _N. J. A. Sloane_, Nov 21 2002