cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076832 Triangle T(n,k), read by rows, giving the total number of inequivalent binary linear [n,i] codes with no column of zeros, summed for i <= k (n >= 1, 1 <= k <= n).

This page as a plain text file.
%I A076832 #67 Oct 01 2019 09:34:29
%S A076832 1,1,2,1,3,4,1,4,7,8,1,5,11,15,16,1,7,19,30,35,36,1,8,29,56,73,79,80,
%T A076832 1,10,44,107,161,186,193,194,1,12,66,200,363,462,497,505,506,1,14,96,
%U A076832 372,837,1222,1392,1439,1448,1449,1,16,136,680,1963,3435,4282
%N A076832 Triangle T(n,k), read by rows, giving the total number of inequivalent binary linear [n,i] codes with no column of zeros, summed for i <= k (n >= 1, 1 <= k <= n).
%C A076832 From _Petros Hadjicostas_, Sep 30 2019: (Start)
%C A076832 It seems that Harald Fripertinger at his website defines T(n,k) = T(n,n) for k > n (and thus he gets an orthogonal array). It seems that T(n,n) = A034343(n).
%C A076832 It seems that T(n,k=2) = A001399(n) for n >= 2 (with A001399(n=1) = T(1,1)); T(n,k=3) = A034337(n) for n >= 3 (with A034337(n) = T(n,n) for 1 <= n <= 2); T(n,k=4) = A034338(n) for n >= 4 (with A034338(n) = T(n,n) for 1 <= n <= 3); and so on. See the Crossrefs below for more information.
%C A076832 To get the g.f. of column k (starting at n = 0 with T(n=0,k) := 1 rather than at n = k), modify the Sage program below (cf. function f).
%C A076832 (End)
%H A076832 Discrete algorithms at the University of Bayreuth, <a href="http://www.algorithm.uni-bayreuth.de/en/research/SYMMETRICA/">Symmetrica</a>. [This package was used to compute T_{nk2} using the cycle index of PGL_k(2).]
%H A076832 Harald Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables.html">Isometry Classes of Codes</a>.
%H A076832 Harald Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables_3.html">Tnk2: Number of the isometry classes of all binary (n,r)-codes for 1 <= r <= k without zero-columns</a>. [This is a rectangular array whose lower triangle contains T(n,k).]
%H A076832 Harald Fripertinger, <a href="https://imsc.uni-graz.at/fripertinger/codes_bms.html">Enumeration of isometry classes of linear (n,k)-codes over GF(q) in SYMMETRICA</a>, Bayreuther Mathematische Schriften 49 (1995), 215-223. [See pp. 216-218. A C-program is given for calculating T_{nk2} in Symmetrica.]
%H A076832 Harald Fripertinger, <a href="https://doi.org/10.1016/S0024-3795(96)00530-7">Cycle of indices of linear, affine, and projective groups</a>, Linear Algebra and its Applications 263 (1997), 133-156. [See p. 152 for the computation of T_{nk2}.]
%H A076832 H. Fripertinger and A. Kerber, <a href="https://doi.org/10.1007/3-540-60114-7_15">Isometry classes of indecomposable linear codes</a>. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [Apparently, the notation for T(n,k) is T_{nk2}.]
%H A076832 David Slepian, <a href="https://archive.org/details/bstj39-5-1219">Some further theory of group codes</a>, Bell System Tech. J. 39(5) (1960), 1219-1252.
%H A076832 David Slepian, <a href="https://doi.org/10.1002/j.1538-7305.1960.tb03958.x">Some further theory of group codes</a>, Bell System Tech. J. 39(5) (1960), 1219-1252.
%H A076832 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cycle_index">Cycle index</a>.
%H A076832 Wikipedia, <a href="https://en.wikipedia.org/wiki/Projective_linear_group">Projective linear group</a>.
%H A076832 <a href="/index/Coa#codes_binary_linear">Index entries for sequences related to binary linear codes</a>
%e A076832 Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
%e A076832   1;
%e A076832   1,  2;
%e A076832   1,  3,  4;
%e A076832   1,  4,  7,   8;
%e A076832   1,  5, 11,  15,  16;
%e A076832   1,  7, 19,  30,  35,  36;
%e A076832   1,  8, 29,  56,  73,  79,  80;
%e A076832   1, 10, 44, 107, 161, 186, 193, 194; ...
%p A076832 # We illustrate how to get a g.f. for column k in Maple when k is small.
%p A076832 with(GroupTheory);
%p A076832 G := ProjectiveGeneralLinearGroup(4, 2);
%p A076832 GroupOrder(G);
%p A076832 # We get that the order is 20160.
%p A076832 f:=CycleIndexPolynomial(G, [x||(1..20160)]);
%p A076832 # We get
%p A076832 # 1/20160*x1^15 + 1/192*x1^7*x2^4 + 1/96*x1^3*x2^6 + 1/16*x1^3*x2^2*x4^2 +
%p A076832 # 1/18*x1^3*x3^4 + 1/6*x1*x2*x3^2*x6 + 1/8*x1*x2*x4^3 + 1/180*x3^5 + 2/7*x1*x7^2 +
%p A076832 # 1/12*x3*x6^2 + 1/15*x5^3 + 2/15*x15
%p A076832 # The only dummy variables that appear are x1, x2, x3, x4, x5, x6, x7, and x15.
%p A076832 g:=subs(x1 = 1/(1 - y), subs(x2 = 1/(-y^2 + 1), subs(x3 = 1/(-y^3 + 1), subs(x4 = 1/(-y^4 + 1), subs(x5 = 1/(-y^5 + 1), subs(x6 = 1/(-y^6 + 1), subs(x7 = 1/(-y^7 + 1), subs(x15 = 1/(-y^15 + 1), f))))))));
%p A076832 # Then we take a Taylor expansion of the above g.f.
%p A076832 taylor(g,y=0,50);
%p A076832 # We get a Taylor expansion for column k = 4 (i.e., A034338).
%p A076832 # _Petros Hadjicostas_, Sep 30 2019
%o A076832 (Sage) # Fripertinger's method to find the g.f. of column k for small k:
%o A076832 def A076832col(k, length):
%o A076832     G = PSL(k, GF(2))
%o A076832     D = G.cycle_index()
%o A076832     f = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D)
%o A076832     return f.taylor(x, 0, length).list()
%o A076832 # For instance the Taylor expansion for column k = 4 gives A034338:
%o A076832 print(A076832col(4, 30)) # _Petros Hadjicostas_, Sep 30 2019
%Y A076832 Columns give truncated versions of A001399 (k = 2), A034337 (k = 3), A034338 (k = 4), A034339 (k = 5), A034340 (k = 6), A034341 (k = 7), A034342 (k = 8), and A034343 (? main diagonal).
%Y A076832 Cf. A034253, A076831.
%K A076832 nonn,tabl
%O A076832 1,3
%A A076832 _N. J. A. Sloane_, Nov 21 2002
%E A076832 Revised by _N. J. A. Sloane_, Mar 01 2004