This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076913 #17 Sep 11 2022 10:10:52 %S A076913 6,60480,440884080,6255156277440,117715791990353760, %T A076913 2591176156368821985600 %N A076913 Coefficients of 3-point function in dimension 4. %C A076913 Klemm and Pandharipande's Table 2 contains the sequence that agrees with the initial terms given here, a(1)-a(5). It continues 63022367592536650014764880, 1642558496795158117310144372160, 45038918271966862868230872208340160. - _Andrey Zabolotskiy_, Sep 11 2022 %H A076913 Geir Ellingsrud and Stein Arild Stromme, <a href="https://arxiv.org/abs/alg-geom/9411005">Bott's formula and enumerative geometry</a>. J. Amer. Math. Soc. 9 (1996), 175-193. [arXiv:alg-geom/9411005] %H A076913 A. Klemm and R. Pandharipande, <a href="https://doi.org/10.1007/s00220-008-0490-9">Enumerative geometry of Calabi-Yau 4-folds</a>, Commun. Math. Phys., 281 (2008), 621-653; arXiv:<a href="https://arxiv.org/abs/math/0702189">math/0702189</a> [math.AG], 2007. %H A076913 David R. Morrison, <a href="https://arxiv.org/abs/alg-geom/9609021">Mathematical Aspects of Mirror Symmetry</a>, in Complex Algebraic Geometry (J. Kollár, ed.), IAS/Park City Math. Series, vol. 3, 1997, pp. 265-340. %Y A076913 Cf. A060345, A076909, A076910, A076911, A076912, A076914, A076915, A076916, A076917, A076923. %K A076913 nonn %O A076913 0,1 %A A076913 _N. J. A. Sloane_, Nov 28 2002