cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076976 Product of the smallest prime divisors of composite numbers between successive primes.

This page as a plain text file.
%I A076976 #32 Jan 12 2024 17:42:05
%S A076976 1,2,2,12,2,12,2,12,120,2,120,12,2,12,168,120,2,120,12,2,168,12,120,
%T A076976 1680,12,2,12,2,12,2217600,12,168,2,15840,2,120,168,12,312,120,2,
%U A076976 15840,2,12,2,221760,262080,12,2,12,120,2,18720,264,168,120,2,120,12,2,34272
%N A076976 Product of the smallest prime divisors of composite numbers between successive primes.
%C A076976 From _Bernard Schott_, Apr 09 2020: (Start)
%C A076976 a(n) = 2 iff prime(n) is in A001359 (prime gap=2).
%C A076976 a(n) = 12 iff prime(n) is in A029710 (prime gap=4).
%C A076976 a(n) = 24 * p with p prime >= 5 iff prime(n) is in A031924 (prime gap=6).
%C A076976 a(n) = 2^m * q with q odd >= 3 iff prime(n+1) - prime(n) = 2*m where m = A007814(a(n)). (End)
%H A076976 Robert Israel, <a href="/A076976/b076976.txt">Table of n, a(n) for n = 1..10000</a>
%p A076976 p:= 2:
%p A076976 for i from 1 to 100 do
%p A076976   q:= p; p:= nextprime(p);
%p A076976   A[i]:= mul(min(numtheory:-factorset(i)),i=q+1..p-1);
%p A076976 od:
%p A076976 seq(A[i],i=1..100); # _Robert Israel_, Mar 30 2020
%t A076976 pspd[{p1_,p2_}]:=Times@@(FactorInteger[#][[1,1]]&/@Range[p1+1,p2-1]); pspd/@Partition[ Prime[Range[70]],2,1] (* _Harvey P. Dale_, Jan 12 2024 *)
%o A076976 (PARI) a(n) = {my(p=1, pn=prime(n)); forcomposite(c=pn, nextprime(pn+1)-1, p *= vecmin(factor(c)[,1]);); p;} \\ _Michel Marcus_, Mar 31 2020
%Y A076976 Cf. A029707 (a(n)=2), A029709 (a(n)=12), A076977.
%Y A076976 Cf. A001359, A029710, A031924.
%K A076976 nonn
%O A076976 1,2
%A A076976 _Amarnath Murthy_, Oct 23 2002
%E A076976 More terms from _Sascha Kurz_, Jan 22 2003