cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076978 Product of the distinct primes dividing the product of composite numbers between consecutive primes.

This page as a plain text file.
%I A076978 #46 May 30 2022 13:00:42
%S A076978 1,2,6,30,6,210,6,2310,2730,30,39270,7410,42,7590,46410,1272810,30,
%T A076978 930930,82110,6,21111090,1230,48969690,1738215570,2310,102,144690,6,
%U A076978 85470,29594505363092670,16770,49990710,138,7849357706190,30,300690390,20223210,1122990,37916970
%N A076978 Product of the distinct primes dividing the product of composite numbers between consecutive primes.
%C A076978 Equivalently, the largest squarefree number that divides the product of composite numbers between successive primes.
%C A076978 From _Robert G. Wilson v_, Dec 02 2020: (Start)
%C A076978 All terms greater than one are even.
%C A076978 Omega(a(n)): 0, 1, 2, 3, 2, 4, 2, 5, 5, 3, 6, 5, 3, 5, 6, 7, 3, 7, 6, 2, 8, 4, 8, 9, 5, ..., .
%C A076978 Records: 1, 2, 6, 30, 210, 2310, 2730, 39270, 46410, 1272810, 21111090, ..., (2*A354218).
%C A076978 Factored: 1, 2, 2*3, 2*3*5, 2*3*5*7, 2*3*5*7*11, 2*3*5*7*13, 2*3*5*7*11*17, 2*3*5*7*13*17, 2*3*5*7*11*19*29, ..., .
%C A076978 (End)
%H A076978 Robert G. Wilson v, <a href="/A076978/b076978.txt">Table of n, a(n) for n = 1..10000</a>
%F A076978 From _Michel Marcus_, May 29 2022: (Start)
%F A076978 a(n) = A007947(A074167(n)).
%F A076978 a(n) = A007947(A061214(n)). (End)
%e A076978 a(4) = product of prime divisors of the product of composite numbers between 7 and 11 = 2 * 3 * 5 = 30.
%e A076978 a(5)=6 because 12 is the only composite number between the 5th and the 6th primes (11 and 13) and largest squarefree divisor of 12 is 6.
%p A076978 with(numtheory): b:=proc(j) if issqrfree(j) then j else fi end: a:=proc(n) local B,BB: B:=divisors(product(i,i=ithprime(n)+1..ithprime(n+1)-1)): BB:=(seq(b(B[j]),j=1..nops(B))): max(BB); end: seq(a(n),n=1..33); # _Emeric Deutsch_, Jul 28 2006
%t A076978 f[n_] := Times @@ (First@# & /@ FactorInteger[Times @@ Range[Prime[n] + 1, Prime[n + 1] - 1]]);  Array[f, 50] (* _Robert G. Wilson v_, Dec 02 2020 *)
%o A076978 (PARI) a(n) = my(p=1); forcomposite(c=prime(n), prime(n+1), p*=c); factorback(factorint(p)[, 1]); \\ _Michel Marcus_, May 29 2022
%o A076978 (Python) from sympy import sieve as p, primefactors
%o A076978 def A076978(n):
%o A076978     result = 1
%o A076978     for composites in range(p[n]+1, p[n+1]):
%o A076978         for primefactor in primefactors(composites):
%o A076978             if result % primefactor != 0: result *= primefactor
%o A076978     return result # _Karl-Heinz Hofmann_, May 30 2022
%Y A076978 Cf. A007947, A061214, A074167, A354217, A354218.
%K A076978 nonn
%O A076978 1,2
%A A076978 _Amarnath Murthy_, Oct 23 2002
%E A076978 More terms from _Emeric Deutsch_, Jul 28 2006
%E A076978 More terms from _Robert G. Wilson v_, Dec 02 2020
%E A076978 Entry revised by _N. J. A. Sloane_, Dec 02 2020