This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077035 #12 Jul 29 2023 06:41:08 %S A077035 7,24,25,60,65,72,97,4704,4705,11292,12233,79044,79985,124212,147737, %T A077035 430416,455065,504072,679097,24502296,24511705,34278300,42140545, %U A077035 68012700,80009705,192023292,208025233,356427144,412692145,990461148,1072999577,2403086064,2631758105 %N A077035 a(1)=7; a(n),a(n+1) are smallest > a(n-1) such that a(n-1)^2+a(n)^2=a(n+1)^2. %C A077035 Note that each time two more terms are added simultaneously. %e A077035 a(1)=7 therefore a(2)=24 and a(3)=25: 7^2+24^2=25^2; a(3)=25 therefore a(4)=60 and a(5)=65: 25^2+60^2=65^2. %o A077035 (Python) %o A077035 from math import isqrt %o A077035 from sympy.ntheory.primetest import is_square %o A077035 def aupton(terms): %o A077035 alst = [7] %o A077035 for n in range(2, terms+1, 2): %o A077035 sq1, an = alst[-1]**2, alst[-1] + 1 %o A077035 while not is_square(sq1 + an**2): an += 1 %o A077035 alst.extend([an, isqrt(sq1 + an**2)]) %o A077035 return alst[:terms] %o A077035 print(aupton(19)) # _Michael S. Branicky_, Jul 24 2021 %Y A077035 Cf. A077034, A076604. %K A077035 nonn %O A077035 1,1 %A A077035 _Zak Seidov_, Oct 21 2002 %E A077035 a(16) and beyond from _Michael S. Branicky_, Jul 24 2021