This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077044 #29 Jan 14 2023 10:53:47 %S A077044 0,1,10,51,155,381,780,1451,2460,3951,6000,8801,12435,17151,23030, %T A077044 30381,39280,50101,62910,78151,95875,116601,140360,167751,198780, %U A077044 234131,273780,318501,368235,423851,485250,553401,628160,710601,800530 %N A077044 Largest coefficient in expansion of (1 + x + x^2 + ... + x^(n-1))^5 = ((1-x^n)/(1-x))^5, i.e., the coefficient of x^floor(5*(n-1)/2) and of x^ceiling(5*(n-1)/2); also number of compositions of floor(5*(n+1)/2) into exactly 5 positive integers each no more than n. %H A077044 Vincenzo Librandi, <a href="/A077044/b077044.txt">Table of n, a(n) for n = 0..10000</a> %H A077044 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %H A077044 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-6,0,6,-2,-2,1). %F A077044 a(n) = (230*n^4 + 70*n^2 + 27 - (30*n^2 + 27)*(-1)^n)/384 = A077042(n, 5). %F A077044 a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8). %F A077044 G.f.: -x*(1 + 8*x + 29*x^2 + 39*x^3 + 29*x^4 + 8*x^5 + x^6) / ( (1+x)^3*(x-1)^5 ). - _R. J. Mathar_, Sep 04 2011 %e A077044 a(2)=10 since the compositions of floor(5*(2+1)/2) = 7 into exactly 5 positive integers each no more than 2 are: 1+1+1+2+2, 1+1+2+1+2, 1+1+2+2+1, 1+2+1+1+2, 1+2+1+2+1, 1+2+2+1+1, 2+1+1+1+2, 2+1+1+2+1, 2+1+2+1+1, 2+2+1+1+1. %t A077044 LinearRecurrence[{2,2,-6,0,6,-2,-2,1},{0,1,10,51,155,381,780,1451},40] (* _Harvey P. Dale_, Mar 05 2015 *) %o A077044 (Magma) [(230*n^4+70*n^2+27-(30*n^2+27)*(-1)^n)/384: n in [0..40]]; // _Vincenzo Librandi_, Sep 05 2011 %o A077044 (PARI) a(n)=(230*n^4+70*n^2-30*n^2*(-1)^n)\/384 \\ _Charles R Greathouse IV_, Sep 25 2012 %K A077044 nonn,easy %O A077044 0,3 %A A077044 _Henry Bottomley_, Oct 22 2002