A077047 Doubly restricted composition numbers: number of compositions of floor(n(n+2)/2) into exactly n positive integers each no more than n+1.
1, 1, 3, 12, 85, 780, 9331, 134512, 2306025, 45433800, 1018872811, 25506741084, 707972099627, 21518492021208, 712601187601395, 25491847538274240, 981272544393935569, 40392787067756440272, 1772592132899627652691
Offset: 0
Keywords
Examples
a(3)=12 since the compositions of [3*5/2]=7 into exactly 3 positive integers each no more than 4 are 1+2+4, 1+3+3, 1+4+2, 2+1+4, 2+2+3, 2+3+2, 2+4+1, 3+1+3, 3+2+2, 3+3+2, 4+1+2, 4+2+1.
Links
Programs
-
Maple
f:= proc(n) if n::odd then coeff(add(x^i,i=0..n)^n,x,(n^2-1)/2) else coeff(add(x^i,i=0..n)^n,x,n^2/2) fi end proc: map(f, [$0..40]); # Robert Israel, Nov 16 2016
-
Mathematica
Table[Max[CoefficientList[Expand[Sum[x^k, {k, 0, n}]^n], x]], {n, 0, 20}] (* Vaclav Kotesovec, Mar 26 2016 *) Table[Max[CoefficientList[((x^(n+1)-1)/(x-1))^n, x]], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 16 2016 *)
Formula
a(n) = A077042(n+1, n).
a(n) ~ exp(1) * sqrt(6/Pi) * n^(n-3/2). - Vaclav Kotesovec, Mar 26 2016
Comments