cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077079 Number of inequivalent bracelets from A006840 with the additional equivalence condition that subsets of 1-beads whose position vectors add to zero can be removed. Different values of vector sums of (-1)^(k/n) with k taking n values in 1..2n up to rotation and reflection.

This page as a plain text file.
%I A077079 #8 Sep 21 2021 06:35:40
%S A077079 1,2,3,6,11,20,53,130,199,784,2135,2649,15695,43085,32764
%N A077079 Number of inequivalent bracelets from A006840 with the additional equivalence condition that subsets of 1-beads whose position vectors add to zero can be removed. Different values of vector sums of (-1)^(k/n) with k taking n values in 1..2n up to rotation and reflection.
%C A077079 At n=15 the sequence decreases because of the large number of divisors of 30.
%t A077079 lowest[li_] := First[Sort[Join[NestList[RotateRight, li, 2n-1], NestList[RotateRight, 1-li, 2n-1], NestList[RotateRight, Reverse@li, 2n-1], NestList[RotateRight, 1-Reverse@li, 2n-1]]]]; ker[n_, k_] := Flatten[Table[Join[{1}, 0Range[ -1+2n/k]], {k}]]; ingekort[li_] := Module[{temp, divi}, len=Length[li]; temp=li-(liRotateRight[li, len/2]); divi=First/@FactorInteger[len]; Table[d=divi[[s]]; k=ker[len/2, d]; temp=Fold[kort[ #1, #2]&, temp, NestList[RotateRight, k, len/d-1]], {s, Length[divi], 2, -1}]; lowest[temp]]; kort[q_, k_] := If[(q.k>=Floor[d/2+1])&&(q.RotateRight[k-kq, len/2]===0), q-kq+RotateRight[k-kq, len/2], q]; Length[inequiv=Union[ingekort/@ListOfBraceletsA006840]]
%Y A077079 Identical to A077078 up to n=9. Cf. A006840.
%K A077079 hard,more,nonn
%O A077079 1,2
%A A077079 _Wouter Meeussen_, Oct 27 2002