This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077101 #16 Dec 04 2023 01:37:10 %S A077101 0,8,12,45,20,140,28,209,133,308,44,768,52,540,512,897,68,1485,76, %T A077101 1700,880,1196,92,3536,561,1620,1276,2992,116,5120,124,3713,1904,2660, %U A077101 1728,8137,148,3276,2560,7844,164,9072,172,6656,5508,4700,188,15120,1485 %N A077101 a(n) = A051612(n)*A065387(n) = sigma(n)^2-phi(n)^2, where A051612(n) = sigma(n) - phi(n) and A065387(n) = sigma(n) + phi(n). %C A077101 If n is prime, then a(n) = 4n. %H A077101 Antti Karttunen, <a href="/A077101/b077101.txt">Table of n, a(n) for n = 1..10000</a> %F A077101 a(n) = A077099(n) * A077100(n). - _Antti Karttunen_, May 26 2017 %F A077101 From _Amiram Eldar_, Dec 04 2023: (Start) %F A077101 a(n) = A072861(n) - A127473(n). %F A077101 Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 5*zeta(3)/2 - Product_{p prime}(1 - (2*p-1)/p^3) = (5/2)*A002117 - A065464 = 2.576892... . (End) %t A077101 Table[DivisorSigma[1,n]^2-EulerPhi[n]^2,{n,50}] (* _Harvey P. Dale_, Nov 08 2013 *) %o A077101 (PARI) A077101(n) = (sigma(n)^2 - eulerphi(n)^2); \\ _Antti Karttunen_, May 26 2017 %Y A077101 Cf. A000010, A000203, A002117, A051612, A062354, A065387, A065464, A072861, A077099, A077100, A127473. %K A077101 nonn,easy %O A077101 1,2 %A A077101 _Labos Elemer_, Nov 06 2002 %E A077101 Edited by _Dean Hickerson_, Nov 07 2002