cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A077100 a(n) = lcm(A051612(n), A065387(n)), where A051612(n) = sigma(n) - phi(n) and A065387(n) = sigma(n) + phi(n).

Original entry on oeis.org

0, 4, 6, 45, 10, 70, 14, 209, 133, 154, 22, 96, 26, 90, 32, 897, 34, 495, 38, 850, 220, 598, 46, 884, 561, 270, 638, 748, 58, 320, 62, 3713, 476, 1330, 72, 8137, 74, 546, 160, 3922, 82, 756, 86, 832, 918, 2350, 94, 3780, 495, 8249, 520, 4514, 106, 2346, 224
Offset: 1

Views

Author

Labos Elemer, Nov 06 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[LCM[#1 - #2, #1 + #2] & @@ {DivisorSigma[1, n], EulerPhi@ n}, {n, 55}] (* Michael De Vlieger, Dec 17 2016 *)
  • PARI
    a(n)=my(f=factor(n),e=eulerphi(f),s=sigma(f)); lcm(s+e,s-e) \\ Charles R Greathouse IV, Nov 27 2013

Formula

If p is prime, then a(p) = 2*p.

Extensions

Edited by Dean Hickerson, Nov 07 2002

A077102 Smallest number m such that GCD(a+b,a-b) = n, where a = sigma(m) and b = phi(m).

Original entry on oeis.org

4, 1, 18, 21, 200, 14, 3364, 12, 722, 328, 9801, 42, 25281, 116, 1800, 15, 36992, 810, 4414201, 88, 196, 29161, 541696, 35, 2928200, 1413, 103968, 284, 98942809, 488, 1547536, 364, 19602, 17536, 814088, 370, 49042009, 55297, 1521, 440, 3150464641
Offset: 1

Views

Author

Labos Elemer, Nov 12 2002

Keywords

Examples

			For n = 10, a(10) = 328, sigma(328) = 630, phi(328) = 160, sigma(328) + phi(328) = 790, sigma(328) - phi(328) = 470, GCD(790,470) = 10.
For n = odd number, a(n) should be either a square or twice a square and so faster search for large values is possible, like e.g., for n = 97: a(97) = 435979^2 is the smallest solution.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := Apply[GCD, {DivisorSigma[1, x]+EulerPhi[x], DivisorSigma[1, x]-EulerPhi[x]}]; t=Table[0, {100}]; Do[s=f[n]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 10^13}]; t
  • PARI
    lista(len) = {my(v = vector(len), c = 0, k = 1, a, b, i); while(c < len, f = factor(k); a = sigma(f); b = eulerphi(f); i = gcd(a+b,a-b); if(i <= len && v[i] == 0, c++; v[i] = k); k++); v;} \\ Amiram Eldar, Nov 14 2024

Formula

a(n) = Min{x; A077099(x) = n}.
Showing 1-2 of 2 results.