cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077177 Number of primitive Pythagorean triangles with perimeter equal to A002110(n), the product of the first n primes.

This page as a plain text file.
%I A077177 #20 Apr 24 2022 17:19:54
%S A077177 0,0,1,0,1,2,3,5,8,17,34,59,111,213,396,746,1413,2690,5147,9826,18885,
%T A077177 36269,69952,134949,260743,504636,978311,1899832,3692980,7190329,
%U A077177 13994206,27279898,53195986
%N A077177 Number of primitive Pythagorean triangles with perimeter equal to A002110(n), the product of the first n primes.
%C A077177 A Pythagorean triangle is a right triangle whose edge lengths are all integers; such a triangle is 'primitive' if the lengths are relatively prime.
%C A077177 Equivalently, number of divisors of s=A070826(n) in the range (sqrt(s), sqrt(2s)). More generally, for any positive integer s, the number of primitive Pythagorean triangles with perimeter 2's equals the number of odd unitary divisors of s in the range (sqrt(s), sqrt(2s)). (A divisor d of n is 'unitary' if gcd(d, n/d) = 1.)
%D A077177 A. S. Anema, "Pythagorean Triangles with Equal Perimeters", Scripta Mathematica, vol. 15 (1949) p. 89.
%D A077177 Albert H. Beiler, "Recreations in the Theory of Numbers", chapter XIV, "The Eternal Triangle", pp. 131, 132.
%D A077177 F. L. Miksa, "Pythagorean Triangles with Equal Perimeters", Mathematics, vol. 24 (1950), p. 52.
%H A077177 Randall L. Rathbun, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;90df5cf0.0206">Equal Perimeter primitive right triangles</a>
%F A077177 a(n) = A070109(A002110(n)) = A078926(A070826(n)).
%e A077177 a(5) = 1 since there is exactly one primitive Pythagorean triangle with perimeter 2*3*5*7*11; its edge lengths are (132, 1085, 1093). a(7) = 3; the 3 triangles have edge lengths (70941, 214060, 225509), (96460, 195789, 218261) and (142428, 156485, 211597).
%t A077177 a[n_] := Length[Select[Divisors[s=Times@@Prime/@Range[2, n]], s<#^2<2s&]]
%o A077177 (PARI) semi_peri(p)= {local(q,r,ct,tot); ct=0; tot=0; pt=0; fordiv(p,q,r=p/q-q; if(r<=q&&r>0,print(q,",",r," [",gcd(q,r),"] "); if(gcd(q,r)==1,ct=ct+1; if(q*r%2==0,pt=pt+1; ); ); tot=tot+1); ); print("semiperimeter:"p," Total sets:",tot," Coprime:",ct," Primitive:",pt); } /* Lists all pairs q,r such that the triangle with edge lengths (q^2-r^2, 2qr, q^2+r^2) has semiperimeter p. */
%Y A077177 Cf. A002110, A070109, A070826, A078926.
%K A077177 more,nonn
%O A077177 1,6
%A A077177 Kermit Rose and _Randall L Rathbun_, Nov 29 2002
%E A077177 Edited by _Dean Hickerson_, Dec 18 2002