A077191 Number of possible character tables for a group of order n.
1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 5, 1, 2, 1, 11, 1, 5, 1, 5, 2, 2, 1, 13, 2, 2, 4, 4, 1, 4, 1, 35, 1, 2, 1, 14, 1, 2, 2, 12, 1, 6, 1, 4, 2, 2, 1, 42, 2, 5, 1, 5, 1, 13, 2, 11, 2, 2, 1, 13, 1, 2, 4, 146, 1, 4, 1, 5, 1, 4, 1, 45, 1, 2, 3, 4, 1, 6, 1, 42, 12, 2
Offset: 1
Examples
There are 5 groups of order 8, but D8 and Q8 have the same character table, so a(8) = 4. - _Eric M. Schmidt_, Sep 08 2013
References
- G. James and M. Liebeck, Representations and characters of groups, Cambridge University Press, 1993
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..511
Programs
-
GAP
A077191 := function(n) local chtables, irr, i; chtables := []; for i in [1..NrSmallGroups(n)] do irr := Irr(SmallGroup(n, i)); if ForAll(chtables, ct->TransformingPermutations(ct, irr) = fail) then Add(chtables, irr); fi; od; return Length(chtables); end; # Eric M. Schmidt, Sep 08 2013
Extensions
More terms from Eric M. Schmidt, Sep 08 2013