A077228 Triangle of compositions with a total that is no more than n into exactly k parts each no more than k.
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 4, 10, 5, 1, 1, 4, 17, 15, 6, 1, 1, 4, 23, 35, 21, 7, 1, 1, 4, 26, 66, 56, 28, 8, 1, 1, 4, 27, 106, 126, 84, 36, 9, 1, 1, 4, 27, 150, 247, 210, 120, 45, 10, 1, 1, 4, 27, 190, 432, 462, 330, 165, 55, 11, 1, 1, 4, 27, 221, 687, 918, 792, 495, 220, 66
Offset: 0
Examples
Rows start: 1; 1,1; 1,3,1; 1,4,4,1; 1,4,10,5,1; 1,4,17,15,6,1; 1,4,23,35,21,7,1; etc. T(6,3)=17 since compositions with 3 parts each no more than 3 and a total no more than 6 are: 1+1+1, 1+1+2, 1+1+3, 1+2+1, 1+2+2, 1+2+3, 1+3+1, 1+3+2, 2+1+1, 2+1+2, 2+1+3, 2+2+1, 2+2+2, 2+3+1, 3+1+1, 3+1+2 and 3+2+1.
Crossrefs
Formula
T(n, k) =a(n-1, k)+A077227(n, k). If n>=k^2, T(n, k)=n^n. If k<=n<2k, T(n, k)=C(n, k).