This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077239 #21 Oct 13 2015 01:47:13 %S A077239 7,37,215,1253,7303,42565,248087,1445957,8427655,49119973,286292183, %T A077239 1668633125,9725506567,56684406277,330380931095,1925601180293, %U A077239 11223226150663,65413755723685,381259308191447,2222142093424997,12951593252358535,75487417420726213 %N A077239 Bisection (odd part) of Chebyshev sequence with Diophantine property. %C A077239 a(n)^2 - 8*b(n)^2 = 17, with the companion sequence b(n)= A077413(n). %C A077239 The even part is A077240(n) with Diophantine companion A054488(n). %H A077239 Colin Barker, <a href="/A077239/b077239.txt">Table of n, a(n) for n = 0..1000</a> %H A077239 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A077239 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %H A077239 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-1). %F A077239 a(n) = 6*a(n-1) - a(n-2), a(-1) := 5, a(0)=7. %F A077239 a(n) = 2*T(n+1, 3)+T(n, 3), with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 3)= A001541(n). %F A077239 G.f.: (7-5*x)/(1-6*x+x^2). %F A077239 a(n) = (((3-2*sqrt(2))^n*(-8+7*sqrt(2))+(3+2*sqrt(2))^n*(8+7*sqrt(2))))/(2*sqrt(2)). - _Colin Barker_, Oct 12 2015 %e A077239 37 = a(1) = sqrt(8*A077413(1)^2 +17) = sqrt(8*13^2 + 17)= sqrt(1369) = 37. %t A077239 Table[2*ChebyshevT[n+1, 3] + ChebyshevT[n, 3], {n, 0, 19}] (* _Jean-François Alcover_, Dec 19 2013 *) %o A077239 (PARI) Vec((7-5*x)/(1-6*x+x^2) + O(x^40)) \\ _Colin Barker_, Oct 12 2015 %Y A077239 Cf. A077242 (even and odd parts). %K A077239 nonn,easy %O A077239 0,1 %A A077239 _Wolfdieter Lang_, Nov 08 2002