This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077244 #21 Sep 08 2022 08:45:07 %S A077244 3,22,173,1362,10723,84422,664653,5232802,41197763,324349302, %T A077244 2553596653,20104423922,158281794723,1246149933862,9810917676173, %U A077244 77241191475522,608118614128003,4787707721548502,37693543158260013,296760637544531602,2336391557197992803 %N A077244 Bisection (odd part) of Chebyshev sequence with Diophantine property. %C A077244 3*a(n)^2 - 5*b(n)^2 = 7, with the companion sequence b(n)= A077243(n). %C A077244 The even part is A077246(n) with Diophantine companion A077245(n). %H A077244 Colin Barker, <a href="/A077244/b077244.txt">Table of n, a(n) for n = 0..1000</a> %H A077244 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A077244 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %H A077244 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-1). %F A077244 a(n)= (2*T(n+1, 4)+T(n, 4))/3, with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 4)= A001091(n). %F A077244 G.f.: (3-2*x)/(1-8*x+x^2). %F A077244 From _Colin Barker_, Oct 12 2015: (Start) %F A077244 a(n) = (((4-sqrt(15))^n * (-10+3*sqrt(15)) + (4+sqrt(15))^n * (10+3*sqrt(15)))) / (2*sqrt(15)). %F A077244 a(n) = 8*a(n-1) - a(n-2). %F A077244 (End) %e A077244 22 = a(1) = sqrt((5*A077243(1)^2 + 7)/3) = sqrt((5*17^2 + 7)/3) = sqrt(484) = 22. %t A077244 LinearRecurrence[{8, -1}, {3, 22}, 25] (* _Vincenzo Librandi_, Oct 12 2015 *) %o A077244 (PARI) Vec((3-2*x)/(1-8*x+x^2) + O(x^40)) \\ _Colin Barker_, Oct 12 2015 %o A077244 (Magma) I:=[3,22]; [n le 2 select I[n] else 8*Self(n-1)-Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Oct 12 2015 %K A077244 nonn,easy %O A077244 0,1 %A A077244 _Wolfdieter Lang_, Nov 08 2002