This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077246 #21 Jan 01 2024 11:05:43 %S A077246 2,13,102,803,6322,49773,391862,3085123,24289122,191227853,1505533702, %T A077246 11853041763,93318800402,734697361453,5784260091222,45539383368323, %U A077246 358530806855362,2822707071474573,22223125764941222 %N A077246 Bisection (even part) of Chebyshev sequence with Diophantine property. %C A077246 3*a(n)^2 - 5*b(n)^2 = 7, with the companion sequence b(n)= A077245(n). %C A077246 The odd part is A077244(n) with Diophantine companion A077243(n). %H A077246 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A077246 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %H A077246 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-1). %F A077246 a(n)= 8*a(n-1) - a(n-2), a(-1) := 3, a(0)=2. %F A077246 a(n)= (T(n+1, 4)+2*T(n, 4))/3, with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 4)= A001091(n). %F A077246 G.f.: (2-3*x)/(1-8*x+x^2). %e A077246 13 = a(1) = sqrt((5*A077245(1)^2 + 7)/3) = sqrt((5*10^2 + 7)/3) = sqrt(169) = 13. %t A077246 LinearRecurrence[{8,-1},{2,13},30] (* _Harvey P. Dale_, Apr 30 2012 *) %K A077246 nonn,easy %O A077246 0,1 %A A077246 _Wolfdieter Lang_, Nov 08 2002