This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077291 #55 Aug 06 2025 00:02:15 %S A077291 0,3,8,35,84,351,836,3479,8280,34443,81968,340955,811404,3375111, %T A077291 8032076,33410159,79509360,330726483,787061528,3273854675,7791105924, %U A077291 32407820271,77123997716,320804348039,763448871240,3175635660123,7557364714688,31435552253195 %N A077291 Second member of Diophantine pair (m,k) that satisfies 6*(m^2 + m) = k^2 + k: a(n) = k. %C A077291 The corresponding m are given in A077288. %C A077291 Numbers x such that (2*x^2 + 2*x + 3)/3 = y^2. The corresponding y are given by A080806. - _Klaus Purath_, Jul 30 2025 %H A077291 Colin Barker, <a href="/A077291/b077291.txt">Table of n, a(n) for n = 0..1000</a> %H A077291 Vladimir Pletser, <a href="https://arxiv.org/abs/2101.00998">Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers</a>, arXiv:2101.00998 [math.NT], 2021. %H A077291 Vladimir Pletser, <a href="https://arxiv.org/abs/2102.13494">Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations</a>, arXiv:2102.13494 [math.NT], 2021. %H A077291 Vladimir Pletser, <a href="https://www.researchgate.net/profile/Vladimir-Pletser/publication/359808848_USING_PELL_EQUATION_SOLUTIONS_TO_FIND_ALL_TRIANGULAR_NUMBERS_MULTIPLE_OF_OTHER_TRIANGULAR_NUMBERS/">Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers</a>, 2022. %H A077291 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,10,-10,-1,1). %F A077291 Let b(n) be A077290. Then a(n) = (-1 + sqrt(8*b(n) + 1))/2. %F A077291 G.f.: x*(x^3+3*x^2-5*x-3) / ((x-1)*(x^4-10*x^2+1)). - _Colin Barker_, Mar 09 2012 %F A077291 From _Vladimir Pletser_, Jul 26 2020: (Start) %F A077291 a(n) = 10*a(n-2) - a(n-4) + 4 with a(-2)=-4, a(-1)=-1, a(0)=0, a(1)=3. %F A077291 Can be defined for negative n by setting a(-n) = - a(n-1) - 1 for all n in Z. %F A077291 a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) - a(n-4) + a(n-5). (End) %e A077291 b(3)=630 so a(3) = (-1 + sqrt(8*630 + 1))/2 = (-1 + sqrt(5041))/2 = (71 - 1)/2 = 35. %p A077291 f := gfun:-rectoproc({a(-2) = -4, a(-1) = -1, a(0) = 0, a(1) = 3, a(n) = 10*a(n - 2) - a(n - 4) + 4}, a(n), remember); map(f, [$ (0 .. 40)])[]; # _Vladimir Pletser_, Jul 26 2020 %t A077291 LinearRecurrence[{1,10,-10,-1,1},{0,3,8,35,84},30] (* _Harvey P. Dale_, Oct 11 2019 *) %o A077291 (PARI) concat(0, Vec(x*(x^3+3*x^2-5*x-3)/((x-1)*(x^4-10*x^2+1)) + O(x^100))) \\ _Colin Barker_, May 15 2015 %Y A077291 Cf. A077288, A077289, A077290, A080806. %K A077291 easy,nonn %O A077291 0,2 %A A077291 Bruce Corrigan (scentman(AT)myfamily.com), Nov 03 2002