This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077316 #18 Aug 02 2022 12:37:40 %S A077316 2,3,5,7,13,19,5,13,17,29,11,31,41,61,71,7,13,19,31,37,43,29,43,71, %T A077316 113,127,197,211,17,41,73,89,97,113,137,193,19,37,73,109,127,163,181, %U A077316 199,271,11,31,41,61,71,101,131,151,181,191,23,67,89,199,331,353 %N A077316 Triangle read by rows: T(n,k) is the k-th prime = 1 (mod n). %H A077316 Nathaniel Johnston, <a href="/A077316/b077316.txt">Rows 1..100, flattened</a> %e A077316 Triangle begins: %e A077316 2; %e A077316 3, 5; %e A077316 7, 13, 19; %e A077316 5, 13, 17, 29; %e A077316 11, 31, 41, 61, 71; %e A077316 ... %p A077316 Tj := proc(n,k) option remember: local j,p: if(k=0)then return 0:fi: for j from procname(n,k-1)+1 do if(isprime(n*j+1))then return j: fi: od: end: A077316 := proc(n,k) return n*Tj(n,k)+1: end: seq(seq(A077316(n,k),k=1..n),n=1..15); # _Nathaniel Johnston_, Sep 02 2011 %t A077316 Tj[n_, k_] := Tj[n, k] = Module[{j}, If[k == 0, Return[0]]; %t A077316 For[j = Tj[n, k-1]+1, True, j++, If[PrimeQ[n*j+1], Return[j]]]]; %t A077316 T[n_, k_] := n*Tj[n, k]+1; %t A077316 Table[Table[T[n, k], {k, 1, n}], {n, 1, 15}] // Flatten (* _Jean-François Alcover_, Aug 02 2022, after _Nathaniel Johnston_ *) %Y A077316 Cf. A034694 (first column), A077317 (main diagonal), A077318 (row sums), A077319, A093870, A193869 (row products). %K A077316 nonn,easy,tabl %O A077316 1,1 %A A077316 _Amarnath Murthy_, Nov 04 2002 %E A077316 Edited and extended by _Franklin T. Adams-Watters_, Aug 29 2006