This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077324 #10 Oct 17 2024 08:21:59 %S A077324 2,8,39,124,275,462,1505,1816,2439,3080,7271,5256,10725,11284,18435, %T A077324 20336,33031,24984,45201,42120,62937,52646,77671,68544,110925,105326, %U A077324 163161,120372,204189,124710,260183,212096,264165,251906,343735,276624 %N A077324 Sum of terms of n-th row of A077321. %C A077324 By definition a(n) == 0 (mod n). %p A077324 A077324 := proc(nmax) local n,a,T,i,p,s ; T := [] ; a := [] ; n :=1 ; while nops(a) < nmax do s := 0 ; for i from 1 to n do p := 2 ; while ( p in T ) or (p-1) mod n <> 0 do p := nextprime(p) ; od ; T := [op(T),p] ; s := s+p ; od ; a := [op(a),s] ; n := n+1 ; od ; RETURN(a) ; end: A077324(50) ; # _R. J. Mathar_, Feb 03 2007 %t A077324 A077324[nmax_] := Module[{n = 1, a = {}, T = {}, i, p, s}, While[Length[a] < nmax, s = 0; For[i = 1, i <= n, i++, p = 2; While[MemberQ[T, p] || Mod[p - 1, n] != 0, p = NextPrime[p]]; T = Append[T, p]; s = s + p]; a = Append[a, s]; n = n + 1]; Return[a]]; %t A077324 A077324[36] (* _Jean-François Alcover_, Oct 17 2024, after _R. J. Mathar_ *) %Y A077324 Cf. A077321, A077322, A077323, A077325. %K A077324 nonn %O A077324 1,1 %A A077324 _Amarnath Murthy_, Nov 04 2002 %E A077324 Corrected and extended by _R. J. Mathar_, Feb 03 2007