cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077335 Sum of products of squares of parts in all partitions of n.

This page as a plain text file.
%I A077335 #44 Sep 07 2023 14:30:02
%S A077335 1,1,5,14,46,107,352,789,2314,5596,14734,34572,92715,210638,531342,
%T A077335 1250635,3042596,6973974,16973478,38399806,91301956,207992892,
%U A077335 483244305,1089029008,2533640066,5642905974,12912848789,28893132440,65342580250,144803524640
%N A077335 Sum of products of squares of parts in all partitions of n.
%H A077335 Seiichi Manyama, <a href="/A077335/b077335.txt">Table of n, a(n) for n = 0..3134</a> (terms 0..1000 from Alois P. Heinz)
%F A077335 G.f.: 1/Product_{m>0} (1 - m^2*x^m).
%F A077335 Recurrence: a(n) = (1/n)*Sum_{k=1..n} b(k)*a(n-k), where b(k) = Sum_{d divides k} d^(2*k/d + 1).
%F A077335 a(n) = S(n,1), where S(n,m) = n^2 + Sum_{k=m..n/2} k^2*S(n-k,k), S(n,n) = n^2, S(n,m) = 0 for m > n. - _Vladimir Kruchinin_, Sep 07 2014
%F A077335 From _Vaclav Kotesovec_, Mar 16 2015: (Start)
%F A077335 a(n) ~ c * 3^(2*n/3), where
%F A077335 c = 668.1486183948153029651700839617715291485899132694809388646986235... if n=3k
%F A077335 c = 667.8494657534167286226227360927068283390090685342574808235616845... if n=3k+1
%F A077335 c = 667.8481656987523944806949678900876994934226621916594805916358627... if n=3k+2
%F A077335 (End)
%F A077335 In closed form, a(n) ~ (Product_{k>=4}(1/(1 - k^2/3^(2*k/3))) / ((1 - 3^(-2/3)) * (1 - 4*3^(-4/3))) + Product_{k>=4}(1/(1 - (-1)^(2*k/3)*k^2/3^(2*k/3))) / ((-1)^(2*n/3) * (1 + 4/3*(-1/3)^(1/3)) * (1 - (-1/3)^(2/3))) + Product_{k>=4}(1/(1 - (-1)^(4*k/3)*k^2/3^(2*k/3))) / ((-1)^(4*n/3) * (1 + (-1)^(1/3)*3^(-2/3)) * (1 - 4*(-1)^(2/3)*3^(-4/3)))) * 3^(2*n/3 - 1). - _Vaclav Kotesovec_, Apr 25 2017
%F A077335 G.f.: exp(Sum_{k>=1} Sum_{j>=1} j^(2*k)*x^(j*k)/k). - _Ilya Gutkovskiy_, Jun 14 2018
%e A077335 The partitions of 4 are 4, 1+3, 2+2, 2+1+1, 1+1+1+1, the corresponding products of squares of parts are 16,9,16,4,1 and their sum is a(4) = 46.
%p A077335 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p A077335       b(n, i-1) +`if`(i>n, 0, i^2*b(n-i, i))))
%p A077335     end:
%p A077335 a:= n-> b(n$2):
%p A077335 seq(a(n), n=0..30);  # _Alois P. Heinz_, Sep 07 2014
%t A077335 b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, i^2*b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Apr 02 2015, after _Alois P. Heinz_ *)
%t A077335 Table[Total[Times@@(#^2)&/@IntegerPartitions[n]],{n,0,30}] (* _Harvey P. Dale_, Apr 29 2018 *)
%t A077335 Table[Total[Times@@@(IntegerPartitions[n]^2)],{n,0,30}] (* _Harvey P. Dale_, Sep 07 2023 *)
%o A077335 (Maxima)
%o A077335 S(n,m):=if n=0 then 1 else if n<m then 0 else if n=m then n^2 else sum(k^2*S(n-k,k),k,m,n/2)+n^2;
%o A077335 makelist(S(n,1),n,1,27); /* _Vladimir Kruchinin_, Sep 07 2014 */
%o A077335 (PARI) N=22;q='q+O('q^N); Vec(1/prod(n=1,N,1-n^2*q^n)) \\ _Joerg Arndt_, Aug 31 2015
%Y A077335 Cf. A006906, A074141, A092484, A265844, A292164.
%K A077335 nonn
%O A077335 0,3
%A A077335 _Vladeta Jovovic_, Nov 30 2002