cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077365 Sum of products of factorials of parts in all partitions of n.

This page as a plain text file.
%I A077365 #58 Oct 27 2023 20:57:18
%S A077365 1,1,3,9,37,169,981,6429,49669,430861,4208925,45345165,536229373,
%T A077365 6884917597,95473049469,1420609412637,22580588347741,381713065286173,
%U A077365 6837950790434781,129378941557961565,2578133190722896861,53965646957320869469,1183822028149936497501
%N A077365 Sum of products of factorials of parts in all partitions of n.
%C A077365 Row sums of arrays A069123 and A134133. Row sums of triangle A134134.
%H A077365 Alois P. Heinz, <a href="/A077365/b077365.txt">Table of n, a(n) for n = 0..450</a> (terms n = 0..70 from Vincenzo Librandi)
%H A077365 J.-P. Bultel, A, Chouria, J.-G. Luque and O. Mallet, <a href="https://hal.archives-ouvertes.fr/hal-00793788">Word symmetric functions and the Redfield-Polya theorem</a>, 2013.
%F A077365 G.f.: 1/Product_{m>0} (1-m!*x^m).
%F A077365 Recurrence: a(n) = 1/n*Sum_{k=1..n} b(k)*a(n-k), where b(k) = Sum_{d divides k} d*d!^(k/d).
%F A077365 a(n) ~ n! * (1 + 1/n + 3/n^2 + 12/n^3 + 67/n^4 + 457/n^5 + 3734/n^6 + 35741/n^7 + 392875/n^8 + 4886114/n^9 + 67924417/n^10), for coefficients see A256125. - _Vaclav Kotesovec_, Mar 14 2015
%F A077365 G.f.: exp(Sum_{k>=1} Sum_{j>=1} (j!)^k*x^(j*k)/k). - _Ilya Gutkovskiy_, Jun 18 2018
%e A077365 The partitions of 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1, the corresponding products of factorials of parts are 24,6,4,2,1 and their sum is a(4) = 37.
%e A077365 1 + x + 3 x^2 + 9 x^3 + 37 x^4 + 169 x^5 + 981 x^6 + 6429 x^7 + 49669 x^8 + ...
%p A077365 b:= proc(n, i, j) option remember;
%p A077365       `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, j)+
%p A077365       `if`(i>n, 0, j^i*b(n-i, i, j+1))))
%p A077365     end:
%p A077365 a:= n-> b(n$2, 1):
%p A077365 seq(a(n), n=0..40);  # _Alois P. Heinz_, Aug 03 2013
%p A077365 # second Maple program:
%p A077365 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p A077365        b(n, i-1)+`if`(i>n, 0, b(n-i, i)*i!)))
%p A077365     end:
%p A077365 a:= n-> b(n$2):
%p A077365 seq(a(n), n=0..30);  # _Alois P. Heinz_, May 11 2016
%t A077365 Table[Plus @@ Map[Times @@ (#!) &, IntegerPartitions[n]], {n, 0, 20}] (* _Olivier Gérard_, Oct 22 2011 *)
%t A077365 a[ n_] := If[ n < 0, 0, Plus @@ Times @@@ (IntegerPartitions[ n] !)] (* _Michael Somos_, Feb 09 2012 *)
%t A077365 nmax=20; CoefficientList[Series[Product[1/(1-k!*x^k),{k,1,nmax}],{x,0,nmax}],x] (* _Vaclav Kotesovec_, Mar 14 2015 *)
%t A077365 b[n_, i_, j_] := b[n, i, j] = If[n==0, 1, If[i<1, 0, b[n, i-1, j] + If[i>n, 0, j^i*b[n-i, i, j+1]]]]; a[n_] := b[n, n, 1]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Oct 12 2015, after _Alois P. Heinz_ *)
%o A077365 (PARI)
%o A077365 N=66; q='q+O('q^N);
%o A077365 gf= 1/prod(n=1,N, (1-n!*q^n) );
%o A077365 Vec(gf)
%o A077365 /* _Joerg Arndt_, Oct 06 2012 */
%Y A077365 Cf. A006906, A074141, A256125, A265950.
%Y A077365 Cf. A069123, A134133, A134134.
%Y A077365 Cf. A051296 (with compositions instead of partitions).
%K A077365 nonn
%O A077365 0,3
%A A077365 _Vladeta Jovovic_, Nov 30 2002
%E A077365 Unnecessarily complicated mma code deleted by _N. J. A. Sloane_, Sep 21 2009