This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077365 #58 Oct 27 2023 20:57:18 %S A077365 1,1,3,9,37,169,981,6429,49669,430861,4208925,45345165,536229373, %T A077365 6884917597,95473049469,1420609412637,22580588347741,381713065286173, %U A077365 6837950790434781,129378941557961565,2578133190722896861,53965646957320869469,1183822028149936497501 %N A077365 Sum of products of factorials of parts in all partitions of n. %C A077365 Row sums of arrays A069123 and A134133. Row sums of triangle A134134. %H A077365 Alois P. Heinz, <a href="/A077365/b077365.txt">Table of n, a(n) for n = 0..450</a> (terms n = 0..70 from Vincenzo Librandi) %H A077365 J.-P. Bultel, A, Chouria, J.-G. Luque and O. Mallet, <a href="https://hal.archives-ouvertes.fr/hal-00793788">Word symmetric functions and the Redfield-Polya theorem</a>, 2013. %F A077365 G.f.: 1/Product_{m>0} (1-m!*x^m). %F A077365 Recurrence: a(n) = 1/n*Sum_{k=1..n} b(k)*a(n-k), where b(k) = Sum_{d divides k} d*d!^(k/d). %F A077365 a(n) ~ n! * (1 + 1/n + 3/n^2 + 12/n^3 + 67/n^4 + 457/n^5 + 3734/n^6 + 35741/n^7 + 392875/n^8 + 4886114/n^9 + 67924417/n^10), for coefficients see A256125. - _Vaclav Kotesovec_, Mar 14 2015 %F A077365 G.f.: exp(Sum_{k>=1} Sum_{j>=1} (j!)^k*x^(j*k)/k). - _Ilya Gutkovskiy_, Jun 18 2018 %e A077365 The partitions of 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1, the corresponding products of factorials of parts are 24,6,4,2,1 and their sum is a(4) = 37. %e A077365 1 + x + 3 x^2 + 9 x^3 + 37 x^4 + 169 x^5 + 981 x^6 + 6429 x^7 + 49669 x^8 + ... %p A077365 b:= proc(n, i, j) option remember; %p A077365 `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, j)+ %p A077365 `if`(i>n, 0, j^i*b(n-i, i, j+1)))) %p A077365 end: %p A077365 a:= n-> b(n$2, 1): %p A077365 seq(a(n), n=0..40); # _Alois P. Heinz_, Aug 03 2013 %p A077365 # second Maple program: %p A077365 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A077365 b(n, i-1)+`if`(i>n, 0, b(n-i, i)*i!))) %p A077365 end: %p A077365 a:= n-> b(n$2): %p A077365 seq(a(n), n=0..30); # _Alois P. Heinz_, May 11 2016 %t A077365 Table[Plus @@ Map[Times @@ (#!) &, IntegerPartitions[n]], {n, 0, 20}] (* _Olivier Gérard_, Oct 22 2011 *) %t A077365 a[ n_] := If[ n < 0, 0, Plus @@ Times @@@ (IntegerPartitions[ n] !)] (* _Michael Somos_, Feb 09 2012 *) %t A077365 nmax=20; CoefficientList[Series[Product[1/(1-k!*x^k),{k,1,nmax}],{x,0,nmax}],x] (* _Vaclav Kotesovec_, Mar 14 2015 *) %t A077365 b[n_, i_, j_] := b[n, i, j] = If[n==0, 1, If[i<1, 0, b[n, i-1, j] + If[i>n, 0, j^i*b[n-i, i, j+1]]]]; a[n_] := b[n, n, 1]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Oct 12 2015, after _Alois P. Heinz_ *) %o A077365 (PARI) %o A077365 N=66; q='q+O('q^N); %o A077365 gf= 1/prod(n=1,N, (1-n!*q^n) ); %o A077365 Vec(gf) %o A077365 /* _Joerg Arndt_, Oct 06 2012 */ %Y A077365 Cf. A006906, A074141, A256125, A265950. %Y A077365 Cf. A069123, A134133, A134134. %Y A077365 Cf. A051296 (with compositions instead of partitions). %K A077365 nonn %O A077365 0,3 %A A077365 _Vladeta Jovovic_, Nov 30 2002 %E A077365 Unnecessarily complicated mma code deleted by _N. J. A. Sloane_, Sep 21 2009