This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077386 #9 Sep 21 2022 01:56:45 %S A077386 1,4,17,106,937,10886,156865,2696338,53808401,1222222222,31124909521, %T A077386 878100801722,27181099309561,915824738370166,33363344029017857, %U A077386 1306644371887759906,54743840860125227041,2443077625590307888670,115697055886568046147601 %N A077386 Sums of rows of triangle in A077385. %H A077386 G. C. Greubel, <a href="/A077386/b077386.txt">Table of n, a(n) for n = 1..385</a> %F A077386 a(n) = {n^n + n^(n-1) -2}/(n-1), for n>1. %F A077386 E.g.f.: 2*x*Ei(-W(-x)) - 2*x*Ei(x) + W(-x) + 2*exp(x) - 2, where Ei(x) is the exponential integral and W(x) is the Lambert W function. - _G. C. Greubel_, Sep 21 2022 %t A077386 Table[If[n==1, 1, (n^n +n^(n-1) -2)/(n-1)], {n, 30}] (* _G. C. Greubel_, Sep 21 2022 *) %o A077386 (PARI) a(n) = sum(k=0, n-1, n^k) + sum(k=0, n-2, n^k); \\ _Michel Marcus_, Feb 03 2014 %o A077386 (Magma) [1] cat [(n^n +n^(n-1) -2)/(n-1): n in [2..30]]; // _G. C. Greubel_, Sep 21 2022 %o A077386 (SageMath) %o A077386 def A077386(n): return 1 if (n==1) else (n^n +n^(n-1) -2)/(n-1) %o A077386 [A077386(n) for n in (1..30)] # _G. C. Greubel_, Sep 21 2022 %Y A077386 Cf. A077385. %K A077386 nonn %O A077386 1,2 %A A077386 _Amarnath Murthy_, Nov 06 2002 %E A077386 More terms from _Michel Marcus_, Feb 03 2014