cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077390 Primes which leave primes at every step if most significant digit and least significant digit are deleted until a one digit or two digit prime is obtained.

This page as a plain text file.
%I A077390 #52 May 19 2025 09:43:00
%S A077390 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,
%T A077390 97,127,131,137,139,151,157,173,179,223,227,229,233,239,251,257,271,
%U A077390 277,331,337,353,359,373,379,421,431,433,439,457,479,521,523,557,571,577,631,653,659
%N A077390 Primes which leave primes at every step if most significant digit and least significant digit are deleted until a one digit or two digit prime is obtained.
%C A077390 There are exactly 920720315 such primes, the largest being 9161759674286961988443272139114537477768682563429152377117139 1111313737919133977331737137933773713713973. - _Karl W. Heuer_, Apr 19 2011
%C A077390 There are exactly 331780864 odd length primes and 588939451 even length primes, the largest odd length prime being
%C A077390 7228828176786792552781668926755667258635743361825711373791931117197999133917737137399993737111177. - _Seth A. Troisi_, May 07 2019
%C A077390 Zeros are not permitted, otherwise this sequence would potentially be infinite (cf. A077391). - _Sean A. Irvine_, May 19 2025
%H A077390 T. D. Noe, <a href="/A077390/b077390.txt">Table of n, a(n) for n = 1..12975</a>
%H A077390 Carlos Rivera, <a href="https://www.primepuzzles.net/puzzles/puzz_950.htm">Problem 950: Bi-truncatable primes</a>, The Prime Puzzles & Problems Connection.
%H A077390 Seth A. Troisi, <a href="/A077390/a077390.txt">Selected terms: the first 200 primes, the last 300 primes, and the smallest and largest primes of each length</a>
%e A077390 21313 is a member as 21313, 131 and 3 all are primes.
%t A077390 msd={1,2,3,4,5,6,7,8,9}; lsd={1,3,7,9}; Clear[p]; p[1]={2,3,5,7}; p[2]={11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97}; p[digits_] := p[digits] = Select[Flatten[Outer[Plus, 10^(digits-1)*msd, 10*p[digits-2], lsd]], PrimeQ]; t={}; k=0; While[Length[t] < 100, k++; t=Join[t, p[k]]]; t (* _T. D. Noe_, Apr 19 2011 *)
%t A077390 paesQ[n_]:=AllTrue[NestWhileList[FromDigits[Most[Rest[ IntegerDigits[ #]]]]&, n,#>99&],PrimeQ]; Select[Prime[Range[150]],paesQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Feb 01 2015 *)
%o A077390 (Python)
%o A077390 from itertools import count, islice
%o A077390 from sympy import isprime, primerange
%o A077390 def agen(): # generator of terms
%o A077390     odds, evens, digits = [2, 3, 5, 7], list(primerange(10, 100)), 3
%o A077390     yield from odds + evens
%o A077390     while len(odds) > 0 or len(evens) > 0:
%o A077390         new = []
%o A077390         old = odds if digits%2 == 1 else evens
%o A077390         for first in "123456789":
%o A077390             for p in old:
%o A077390                 mid = str(p)
%o A077390                 for last in "1379":
%o A077390                     t = int(first + mid + last)
%o A077390                     if isprime(t):
%o A077390                         yield t
%o A077390                         new.append(t)
%o A077390         old = new
%o A077390         if digits%2: odds = old
%o A077390         else: evens = old
%o A077390         print("...", digits, time()-time0)
%o A077390         digits += 1
%o A077390 print(list(islice(agen(), 80))) # _Michael S. Branicky_, May 06 2022
%Y A077390 Cf. A024770 (right-truncatable primes), A024785 (left-truncatable primes), A137812 (left-or-right truncatable primes).
%Y A077390 Cf. A077391.
%K A077390 base,fini,nonn
%O A077390 1,1
%A A077390 _Amarnath Murthy_, Nov 07 2002
%E A077390 Corrected and extended by _T. D. Noe_, Apr 19 2011