This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077415 #65 Mar 06 2024 04:50:34 %S A077415 0,5,16,35,64,105,160,231,320,429,560,715,896,1105,1344,1615,1920, %T A077415 2261,2640,3059,3520,4025,4576,5175,5824,6525,7280,8091,8960,9889, %U A077415 10880,11935,13056,14245,15504,16835,18240,19721,21280,22919,24640,26445 %N A077415 a(n) = n*(n+2)*(n-2)/3. %C A077415 a(n) is the number of independent components of a 3-tensor t(a,b,c) which satisfies t(a,b,c)=t(b,a,c) and sum(t(a,a,c),a=1..n)=0 for all c and t(a,b,c)+t(b,c,a)+t(c,a,b)=0, with a,b,c range 1..n. (3-tensor in n-dimensional space which is symmetric and traceless in one pair of its indices and satisfies the cyclic identity.) %C A077415 Number of standard tableaux of shape (n-1,2,1) (n>=3). - _Emeric Deutsch_, May 13 2004 %C A077415 Zero followed by partial sums of A028387, starting at n=1. - _Klaus Brockhaus_, Oct 21 2008 %C A077415 For n>=4, a(n-1) is the number of permutations of 1,2...,n with the distribution of up (1) - down (0) elements 0...0101 (the first n-4 zeros), or, the same, a(n-1) is up-down coefficient {n,5} (see comment in A060351). - _Vladimir Shevelev_, Feb 14 2014 %C A077415 For n>=3, a(n) equals the second immanant of the (n-1) X (n-1) tridiagonal matrix with 2's along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - _John M. Campbell_, Jan 08 2016 %H A077415 G. C. Greubel, <a href="/A077415/b077415.txt">Table of n, a(n) for n = 2..10000</a> %H A077415 Mark Roger Sepanski, <a href="https://doi.org/10.37236/3350">On Divisibility of Convolutions of Central Binomial Coefficients</a>, Electronic Journal of Combinatorics, 21 (1) 2014, #P1.32. %H A077415 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A077415 a(n) = n*(n+2)*(n-2)/3 = A077414(n) - binomial(n+2,3) = A077414(n) - A000292(n-1). %F A077415 G.f.: x^3*(5 - 4*x + x^2)/(1-x)^4. %F A077415 a(n) = A084990(n-1) - 1. - _Reinhard Zumkeller_, Aug 20 2007 %F A077415 a(n) = Sum_{i=0..floor((n-1)/2)} (-1)^i * 2^(n-2*i-1) * binomial(n-i-1, i) * (n-2*i-2). - _John M. Campbell_, Jan 08 2016 %F A077415 From _Amiram Eldar_, Jan 06 2021: (Start) %F A077415 Sum_{n>=3} 1/a(n) = 11/32. %F A077415 Sum_{n>=3} (-1)^(n+1)/a(n) = 5/32. (End) %F A077415 E.g.f.: x*(1 + exp(x)*(x^2 + 3*x - 3)/3). - _Stefano Spezia_, Mar 06 2024 %p A077415 seq((n^3-4*n)/3, n=2..35); # _Zerinvary Lajos_, Jan 20 2007 %t A077415 Print[Table[Sum[(-1)^i*2^(n-2*i-1)*Binomial[n-i-1, i]*(n-2*i-2), {i, 0, Floor[(n-1)/2]}], {n, 2, 100}]] ; (* _John M. Campbell_, Jan 08 2016 *) %t A077415 LinearRecurrence[{4, -6, 4, -1}, {0, 5, 16, 35}, 50] (* _Vincenzo Librandi_, Jan 09 2016 *) %t A077415 Table[n*(n + 2)*(n - 2)/3, {n, 2, 50}] (* _G. C. Greubel_, Jan 18 2018 *) %o A077415 (PARI) {a=0; print1(a,","); for(n=1, 42, print1(a=a+n+(n+1)^2, ","))} \\ _Klaus Brockhaus_, Oct 21 2008 %o A077415 (PARI) concat(0, Vec(x^3*(5-4*x+x^2)/(1-x)^4 + O(x^100))) \\ _Altug Alkan_, Jan 08 2015 %o A077415 (Magma) [n*(n+2)*(n-2)/3: n in [2..50]]; /* or */ I:=[0,5,16,35]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // _Vincenzo Librandi_, Jan 09 2016 %Y A077415 Cf. A000292, A028387 (first differences), A033275 (partial sums), A060351, A077414, A084990. %K A077415 nonn,easy %O A077415 2,2 %A A077415 _Wolfdieter Lang_, Nov 29 2002