cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077420 Bisection of Chebyshev sequence T(n,3) (odd part) with Diophantine property.

This page as a plain text file.
%I A077420 #54 Aug 22 2024 09:17:45
%S A077420 1,33,1121,38081,1293633,43945441,1492851361,50713000833,
%T A077420 1722749176961,58522759015841,1988051057361633,67535213191279681,
%U A077420 2294209197446147521,77935577499977736033,2647515425801796877601
%N A077420 Bisection of Chebyshev sequence T(n,3) (odd part) with Diophantine property.
%C A077420 (3*a(n))^2 - 2*(2*b(n))^2 = 1 with companion sequence b(n)= A046176(n+1), n>=0 (special solutions of Pell equation).
%H A077420 Vincenzo Librandi, <a href="/A077420/b077420.txt">Table of n, a(n) for n = 0..200</a>
%H A077420 Z. Cerin and G. M. Gianella, <a href="https://eudml.org/doc/126317">On sums of squares of Pell-Lucas Numbers</a>, INTEGERS 6 (2006) #A15
%H A077420 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H A077420 S. Vidhyalakshmi, V. Krithika, and K. Agalya, <a href="http://www.ijeter.everscience.org/Manuscripts/Volume-4/Issue-2/Vol-4-issue-2-M-04.pdf">On The Negative Pell Equation y^2 = 72x^2 - 8</a>, International Journal of Emerging Technologies in Engineering Research (IJETER) Volume 4, Issue 2, February (2016).
%H A077420 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H A077420 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (34,-1).
%F A077420 a(n) = 34*a(n-1) - a(n-2), a(-1)=1, a(0)=1.
%F A077420 a(n) = T(2*n+1, 3)/3 = S(n, 34) - S(n-1, 34), with S(n, x) := U(n, x/2), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120. S(-1, x)=0, S(n, 34)= A029547(n), T(n, 3)=A001541(n).
%F A077420 G.f.: (1-x)/(1-34*x+x^2).
%F A077420 a(n) = sqrt(8*A046176(n+1)^2 + 1)/3.
%F A077420 a(n) = (k^n)+(k^(-n))-a(n-1) = A003499(2*n)-a(n-1), where k = (sqrt(2)+1)^4 = 17+12*sqrt(2) and a(0)=1. - _Charles L. Hohn_, Apr 05 2011
%F A077420 a(n) = a(-n-1) = A029547(n)-A029547(n-1) = ((1+sqrt(2))^(4n+2)+(1-sqrt(2))^(4n+2))/6. - _Bruno Berselli_, Nov 22 2011
%t A077420 LinearRecurrence[{34,-1},{1,33},20] (* _Vincenzo Librandi_, Nov 22 2011 *)
%t A077420 a[c_, n_] := Module[{},
%t A077420    p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
%t A077420    d := Denominator[Convergents[Sqrt[c], n p]];
%t A077420    t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
%t A077420    Return[t];
%t A077420 ] (* Complement of A041027 *)
%t A077420 a[18, 20] (* _Gerry Martens_, Jun 07 2015 *)
%o A077420 (Magma) I:=[1,33]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // _Vincenzo Librandi_, Nov 22 2011
%o A077420 (PARI) Vec((1-x)/(1-34*x+x^2)+O(x^99)) \\ _Charles R Greathouse IV_, Nov 22 2011
%o A077420 (Maxima) makelist(expand(((1+sqrt(2))^(4*n+2)+(1-sqrt(2))^(4*n+2))/6),n,0,14);  /* _Bruno Berselli, Nov 22 2011 */
%Y A077420 Cf. A056771 (even part).
%Y A077420 Row 34 of array A094954.
%Y A077420 Row 3 of array A188646.
%Y A077420 Cf. similar sequences listed in A238379.
%Y A077420 Similar sequences of the type cosh((2*n+1)*arccosh(k))/k are listed in A302329. This is the case k=3.
%K A077420 nonn,easy
%O A077420 0,2
%A A077420 _Wolfdieter Lang_, Nov 29 2002