This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077426 #25 Aug 07 2015 02:41:54 %S A077426 5,13,17,29,37,41,53,61,65,73,85,89,97,101,109,113,125,137,145,149, %T A077426 157,173,181,185,193,197,229,233,241,257,265,269,277,281,293,313,317, %U A077426 325,337,349,353,365,373,389,397,401,409,421,425,433,445,449,457,461,481,485 %N A077426 Nonsquare integers n such that the continued fraction (sqrt(n)+1)/2 has odd period length. %C A077426 Nonsquare integers n for which Pell equation x^2 - n*y^2 = -4 has infinitely many integer solutions. The smallest solutions are given in A078356 and A078357. %D A077426 O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, table p. 108). %H A077426 Vincenzo Librandi, <a href="/A077426/b077426.txt">Table of n, a(n) for n = 1..1000</a> %H A077426 Wikipedia, <a href="http://en.wikipedia.org/wiki/Pell%27s_equation">Pell's equation</a> %p A077426 isOddPrim := proc(n::integer) %p A077426 local cf; %p A077426 cf := numtheory[cfrac]((sqrt(n)+1)/2,'periodic','quotients') ; %p A077426 if nops(op(2,cf)) mod 2 =1 then %p A077426 RETURN(true) ; %p A077426 else %p A077426 RETURN(false) ; %p A077426 fi ; %p A077426 end: %p A077426 notA077426 := proc(n::integer) %p A077426 if issqr(n) then %p A077426 RETURN(true) ; %p A077426 elif not isOddPrim(n) then %p A077426 RETURN(true) ; %p A077426 else %p A077426 RETURN(false) ; %p A077426 fi ; %p A077426 end: %p A077426 A077426 := proc(n::integer) %p A077426 local resul,i ; %p A077426 resul := 5 ; %p A077426 i := 1 ; %p A077426 while i < n do %p A077426 resul := resul+4 ; %p A077426 while notA077426(resul) do %p A077426 resul := resul+4 ; %p A077426 od ; %p A077426 i:= i+1 ; %p A077426 od ; %p A077426 RETURN(resul) ; %p A077426 end: %p A077426 for n from 1 to 61 do print(A077426(n)) ; od : # _R. J. Mathar_, Apr 25 2006 %t A077426 fQ[n_] := !IntegerQ@ Sqrt@ n && OddQ@ Length@ ContinuedFraction[(Sqrt@ n + 1)/2][[2]]; Select[Range@ 500, fQ] (* _Robert G. Wilson v_, Nov 17 2012 *) %Y A077426 A subsequence of A077425. %Y A077426 Odd elements of A003814. %Y A077426 Cf. A077427, A172000. %K A077426 nonn,easy %O A077426 1,1 %A A077426 _Wolfdieter Lang_, Nov 29 2002 %E A077426 Edited and extended by _Max Alekseyev_, Mar 03 2010 %E A077426 Edited by _Max Alekseyev_, Mar 05 2010