cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077427 Primitive period length of (regular) continued fraction of (sqrt(D(n))+1)/2 for D(n)=A077425(n).

Original entry on oeis.org

1, 1, 3, 2, 1, 4, 3, 5, 2, 1, 6, 3, 3, 4, 9, 2, 1, 7, 2, 9, 3, 6, 7, 7, 2, 1, 10, 4, 7, 4, 3, 5, 8, 5, 10, 2, 1, 12, 5, 3, 4, 15, 3, 14, 4, 12, 4, 16, 2, 1, 9, 2, 19, 2, 16, 6, 3, 8, 11, 5, 6, 9, 15, 2, 1, 10, 10, 4, 6, 19, 3, 4, 3, 16
Offset: 1

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

The Pell equation x^2 - D(n)*y^2 = -4 has (infinitely many integer) solutions if and only if a(n) is odd.

Examples

			a(6)=4 because the (periodic) continued fraction for (sqrt(D(6))+1)/2 = (sqrt(33)+1)/2 = 3.372281324... is [3, periodic(2, 1, 2, 5,)] with period length 4. Because these continued fractions are always of the form [b(0),periodic(b(1),b(2),...,b(2),b(1),2*b(0)-1,)] with the symmetric piece b(1),b(2),..., b(2),b(1), Perron op. cit. writes for this b(0),b(1),b(2),...,(b(k/2)) if the period length k is even and b(0),b(1),b(2),...,b((k-1)/2) if the period length is odd. In this example: k=4 and Perron writes 3,2,(1). Another example: D(8)= A077425(8)=41 leads to Perron's 3,1,2 standing for [3,periodic(1,2,2,1,5,)], the continued fraction for (sqrt(41)+1)/2 which has odd period length a(8)=5.
a(4)=2 is even and D(4)=A077425(4)=21, hence x^2 - 21*y^2 = -4 has no nontrivial integer solution.
a(8)=5 is odd and D(8)=A077425(8)=41, hence x^2 - 41*y^2 = -4 is solvable (with nontrivial integers) as well as x^2 - 41*y^2 = +4.
		

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109).

Crossrefs

Cf. A077426.