This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077428 #19 Apr 14 2019 10:49:20 %S A077428 3,11,66,5,27,46,146,4098,7,51,302,1523,258,25,4562498,9,83,1000002, %T A077428 29,125619266,402,82,68123,2408706,11,123,33710,173,12166146,190,578, %U A077428 3723,4354,45371,23550,13,171,124846,1703027,18498,110,12448646853698,786 %N A077428 Minimal (positive) solution a(n) of Pell equation a(n)^2 - D(n)*b(n)^2 = +4 with D(n)= A077425(n). The companion sequence is b(n)=A078355(n). %C A077428 Computed from Perron's table (see reference p. 108, for n = 1..28) which gives the minimal x,y values for the Diophantine eq. x^2 - x*y - ((D(n)-1)/4)*y^2= +1, resp., -1 if D(n)=A077425(n), resp, D(n)=A077425(n) and D(n) also in A077426. %C A077428 The conversion from the x,y values of Perron's table to the minimal a=a(n) and b=b(n) solutions of a^2 - D(n)*b^2 =+4 is as follows. If D(n)=A077425(n) but not from A077426 (period length of continued fraction of (sqrt(D(n))+1)/2 is even) then a(n)=2*x(n)-y(n) and b(n)=y(n). E.g. D(4)=21 with Perron's (x,y)=(3,1) and (a,b)=(5,1). 1=b(4)=A078355(4). If D(n)=A077425(n) appears also in A077426 (odd period length of continued fraction of (sqrt(D(n))+1)/2) then a(n)=(2*x-y)^2+2 and b(n)=(2*x-y)*y. E.g. D(7)=37 with Perron's (x,y)=(7,2) leading to (a,b)=(146,24) with 24=b(7)=A078355(7). %C A077428 The generic D(n) values are those from A078371(k-1) := (2*k+3)*(2*k-1), for k>=1, which are 5 (mod 8). For such D values the minimal solution is (a(n),b(n))=(2*k+1,1) (e.g. D(16)=77= A078371(3) with a(16)=2*4+1=9 and b(16)=A078355(16)=1). %C A077428 The general solution of Pell a^2-D(n)*b^2 = +4 with generic D(n)=A077425(n)=A078371(k-1), k>=1, is a(n,m)= 2*T(m+1,(2*k+1)/2) and b(n,m)= S(m,2*k+1), m>=0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second, kind. See A053120 resp. A049310. %C A077428 For non-generic D(n) (not from A078371) the general solution of a^2-D(n)*b^2 = +4 is a(n,m)= 2*T(m+1,a(n)/2) and b(n,m)= b(n)*S(m,a(n)), m>=0, with Chebyshev's polynomials and in this case b(n)>1. %D A077428 O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108). %H A077428 S. R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/">Class number theory</a> %H A077428 Steven R. Finch, <a href="/A000924/a000924.pdf">Class number theory</a> [Cached copy, with permission of the author] %H A077428 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %t A077428 d = Select[Range[5, 300, 4], !IntegerQ[Sqrt[#]]&]; a[n_] := Module[{a, b, r}, a /. {r = Reduce[a > 0 && b > 0 && a^2 - d[[n]]*b^2 == 4, {a, b}, Integers]; (r /. C[1] -> 0) || (r /. C[1] -> 1) // ToRules} // Select[#, IntegerQ, 1] &] // First; Table[a[n], {n, 1, 43}] (* _Jean-François Alcover_, Jul 30 2013 *) %K A077428 nonn %O A077428 1,1 %A A077428 _Wolfdieter Lang_, Nov 29 2002 %E A077428 More terms from _Max Alekseyev_, Mar 03 2010