cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077436 Let B(n) be the sum of binary digits of n. This sequence contains n such that B(n) = B(n^2).

This page as a plain text file.
%I A077436 #60 Mar 18 2023 08:49:14
%S A077436 0,1,2,3,4,6,7,8,12,14,15,16,24,28,30,31,32,48,56,60,62,63,64,79,91,
%T A077436 96,112,120,124,126,127,128,157,158,159,182,183,187,192,224,240,248,
%U A077436 252,254,255,256,279,287,314,316,317,318,319,351,364,365,366,374,375,379,384
%N A077436 Let B(n) be the sum of binary digits of n. This sequence contains n such that B(n) = B(n^2).
%C A077436 Superset of A023758.
%C A077436 Hare, Laishram, & Stoll show that this sequence contains infinitely many odd numbers. In particular for each k in {12, 13, 16, 17, 18, 19, 20, ...} there are infinitely many terms in this sequence with binary digit sum k. - _Charles R Greathouse IV_, Aug 25 2015
%H A077436 Reinhard Zumkeller, <a href="/A077436/b077436.txt">Table of n, a(n) for n = 1..10476, all terms <= 2^20</a>
%H A077436 Karam Aloui, Damien Jamet, Hajime Kaneko, Steffen Kopecki, Pierre Popoli, and Thomas Stoll, <a href="https://arxiv.org/abs/2203.05451">On the binary digits of n and n^2</a>, arXiv:2203.05451 [math.NT], 2022.
%H A077436 K. G. Hare, S. Laishram, and T. Stoll, <a href="http://arxiv.org/abs/1001.4170">The sum of digits of n and n^2</a>, International Journal of Number Theory 7:7 (2011), pp. 1737-1752.
%H A077436 Giuseppe Melfi, <a href="https://arxiv.org/abs/math/0402458">On simultaneous binary expansions of n and n^2</a>, arXiv:math/0402458 [math.NT], 2004.
%H A077436 Giuseppe Melfi, <a href="http://melfi.150m.com/presentazione.pdf">Su alcune successioni di interi</a> (English with an Italian title)
%F A077436 A159918(a(n)) = A000120(a(n)). - _Reinhard Zumkeller_, Apr 25 2009
%e A077436 The element 79 belongs to the sequence because 79=(1001111) and 79^2=(1100001100001), so B(79)=B(79^2)
%p A077436 select(t -> convert(convert(t,base,2),`+`) = convert(convert(t^2,base,2),`+`), [$0..1000]); # _Robert Israel_, Aug 27 2015
%t A077436 t={}; Do[If[DigitCount[n, 2, 1] == DigitCount[n^2, 2, 1], AppendTo[t, n]], {n, 0, 364}]; t
%t A077436 f[n_] := Total@ IntegerDigits[n, 2]; Select[Range[0, 384], f@ # == f[#^2] &] (* _Michael De Vlieger_, Aug 27 2015 *)
%o A077436 (Haskell)
%o A077436 import Data.List (elemIndices)
%o A077436 import Data.Function (on)
%o A077436 a077436 n = a077436_list !! (n-1)
%o A077436 a077436_list = elemIndices 0
%o A077436    $ zipWith ((-) `on` a000120) [0..] a000290_list
%o A077436 -- _Reinhard Zumkeller_, Apr 12 2011
%o A077436 (PARI) is(n)=hammingweight(n)==hammingweight(n^2) \\ _Charles R Greathouse IV_, Aug 25 2015
%o A077436 (Magma) [n: n in [0..400] | &+Intseq(n, 2) eq &+Intseq(n^2, 2)]; // _Vincenzo Librandi_, Aug 30 2015
%o A077436 (Python)
%o A077436 def ok(n): return bin(n).count('1') == bin(n**2).count('1')
%o A077436 print([m for m in range(400) if ok(m)]) # _Michael S. Branicky_, Mar 11 2022
%Y A077436 Cf. A058369, A000120, A000290, A083567.
%Y A077436 Cf. A211676 (number of n-bit numbers in this sequence).
%Y A077436 A261586 is a subsequence. Subsequence of A352084.
%K A077436 easy,nonn,base
%O A077436 1,3
%A A077436 _Giuseppe Melfi_, Nov 30 2002
%E A077436 Initial 0 added by _Reinhard Zumkeller_, Apr 28 2012, Apr 12 2011