This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077460 #28 Aug 22 2024 09:16:49 %S A077460 1,1,1,3,12,70,464,3482,27779,233556,2038484,18357672,169599492, %T A077460 1601270562,15401735750,150547249932,1492451793728,14980801247673, %U A077460 152047178479946,1558569469867824,16119428039548246 %N A077460 Number of nonisomorphic ways a loop can cross a road (running East-West) 2n times. %C A077460 Nonisomorphic closed meanders, where two closed meanders are considered equivalent if one can be obtained from the other by reflections in an East-West or North-South mirror (a group of order 4). %C A077460 Symmetries are possible by reflection in a North-South mirror, or by rotation through 180 degrees when n is odd.(see illustration). - _Andrew Howroyd_, Nov 24 2015 %H A077460 Andrew Howroyd, <a href="/A077460/a077460.pdf">Illustration of Closed Meander Symmetries</a> %F A077460 From _Andrew Howroyd_, Nov 24 2015: (Start) %F A077460 a(2n+1) = (A005315(2n+1) + A005316(2n+1) + A060206(n)) / 4. %F A077460 a(2n) = (A005315(2n) + 2 * A005316(2n)) / 4. (End) %e A077460 A meander can be specified by marking 2n equally spaced points along a line and recording the order in which the meander visits the points. %e A077460 For n = 2, 4, 6, 8 the solutions are as follows: %e A077460 n=2: 1 2 %e A077460 n=4: 1 2 3 4 %e A077460 n=6: 1 2 3 4 5 6, 1 2 3 6 5 4, 1 2 5 4 3 6 %e A077460 n=8: 1 2 3 4 5 6 7 8, 1 2 3 4 5 8 7 6, 1 2 3 4 7 6 5 8, 1 2 7 6 3 4 5 8, 1 2 3 6 7 8 5 4, 1 2 3 6 5 4 7 8, 1 2 7 6 5 4 3 8, 1 2 3 8 5 6 7 4, 1 2 3 8 7 4 5 6, 1 2 5 6 7 4 3 8, 1 2 7 4 5 6 3 8, 1 4 3 2 7 6 5 8 %t A077460 A000682 = Import["https://oeis.org/A000682/b000682.txt", "Table"][[All, 2]]; %t A077460 A005316 = Cases[Import["https://oeis.org/A005316/b005316.txt", "Table"], {_, _}][[All, 2]]; %t A077460 a[0] = a[1] = 1; %t A077460 a[n_] := If[OddQ[n], (A005316[[n + 1]] + A005316[[2n]] + A000682[[n]])/4, (A005316[[2n]] + 2 A005316[[n + 1]])/4]; %t A077460 a /@ Range[0, 20] (* _Jean-François Alcover_, Sep 06 2019, after _Andrew Howroyd_ *) %Y A077460 The total number of closed meanders with 2n crossings is given in A005315. Cf. A000682, A005316, A060206, A077055, A078104, A078105, A078591. %K A077460 nonn,nice %O A077460 0,4 %A A077460 _N. J. A. Sloane_ and _Jon Wild_, Dec 03 2002 %E A077460 a(10)-a(20) from _Andrew Howroyd_, Nov 24 2015