This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077463 #30 Feb 16 2025 08:32:48 %S A077463 0,0,0,1,1,1,1,2,2,3,3,3,3,3,3,4,4,4,3,4,4,5,5,5,6,6,6,7,6,6,6,7,7,7, %T A077463 8,8,8,9,9,9,9,9,9,9,9,10,9,9,9,10,10,11,11,11,12,13,13,14,13,13,12, %U A077463 12,12,12,13,13,13,13,13,14,14,14,13,13,13,14,15,15,14,15,15,15,15,15 %N A077463 Number of primes p such that n < p < 2n-2. %C A077463 a(n) > 0 for n > 3 by Bertrand's postulate (and Chebyshev's proof of 1852). - _Jonathan Vos Post_, Aug 08 2013 %H A077463 J. Sondow and E. Weisstein, <a href="https://mathworld.wolfram.com/BertrandsPostulate.html">Bertrand's Postulate</a>, World of Mathematics %H A077463 M. Tchebichef, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k163969/f374.image.r=periodiques.langFR">Memoire sur les nombres premiers</a>, J. Math. Pures Appliq. 17 (1852) 366. %e A077463 a(19) = 3, the first value smaller than a previous value, because the only primes between 19 and 2 * 19 - 2 = 36 are {23,29,31}. - _Jonathan Vos Post_, Aug 08 2013 %t A077463 a[n_] := PrimePi[2n - 2] - PrimePi[n]; a[1] = 0; Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Oct 31 2012 *) %Y A077463 Related sequences: %Y A077463 Primes (p) and composites (c): A000040, A002808, A000720, A065855. %Y A077463 Primes between p(n) and 2*p(n): A063124, A070046; between c(n) and 2*c(n): A376761; between n and 2*n: A035250, A060715, A077463, A108954. %Y A077463 Composites between p(n) and 2*p(n): A246514; between c(n) and 2*c(n): A376760; between n and 2*n: A075084, A307912, A307989, A376759. %K A077463 nonn %O A077463 1,8 %A A077463 _Eric W. Weisstein_, Nov 05 2002