This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077528 #14 Dec 03 2023 10:02:30 %S A077528 3,4,5,6,7,8,9,55,11,111,121,66,99,121,33,171,55,77,101,22,111,323, %T A077528 121,101,131,55,141,88,121,373,33,232,171,141,181,1111,77,313,121,575, %U A077528 505,44,353,181,323,424,1441,99,101,868,313,10601,55,111,393,343,929,414 %N A077528 a(n) = smallest nontrivial (>1) palindrome == 1 (mod n). %H A077528 Robert Israel, <a href="/A077528/b077528.txt">Table of n, a(n) for n = 2..10000</a> %p A077528 f:= proc(n) local d, S,j,q,x0,t,r,x; %p A077528 for d from 2 do %p A077528 S[ceil(d/2)+1]:= {0}: %p A077528 for j from ceil(d/2) to 1 by -1 do %p A077528 if j = (d+1)/2 then q:= 10^(j-1) %p A077528 else q:= 10^(j-1)+10^(d-j) %p A077528 fi; %p A077528 if j = 1 then x0:= 1 else x0:= 0 fi; %p A077528 S[j]:= {seq(seq(x*q+s mod n, x=x0..9), s=S[j+1])}; %p A077528 od; %p A077528 if member(1, S[1]) then %p A077528 t:= 1; r:= 0; %p A077528 for j from 1 to ceil(d/2) do %p A077528 if j = (d+1)/2 then q:= 10^(j-1) else q:= 10^(j-1)+10^(d-j) fi; %p A077528 if j = 1 then x0:= 1 else x0:= 0 fi; %p A077528 for x from x0 to 9 do %p A077528 if member(t - x*q mod n, S[j+1]) then %p A077528 r:= r + x*q; %p A077528 t:= t - x*q mod n; %p A077528 break %p A077528 fi %p A077528 od; %p A077528 od; %p A077528 return r %p A077528 fi %p A077528 od %p A077528 end proc: %p A077528 $3..9, seq(f(n),n=9..100); # _Robert Israel_, Dec 17 2019 %t A077528 With[{pals=Select[Range[2,11000],PalindromeQ]},Table[SelectFirst[pals,Mod[#,n]==1&],{n,2,60}]] (* _Harvey P. Dale_, Dec 03 2023 *) %Y A077528 Cf. A002113. %K A077528 base,nonn,look %O A077528 2,1 %A A077528 _Amarnath Murthy_, Nov 08 2002 %E A077528 Corrected and extended by _Ray Chandler_, Aug 20 2003